First Principles Design of Magnetic Materials, Models, and Mechanisms

PI Lucas Wagner, University of Illinois at Urbana-­Champaign
Project Description

This projects studies the role of magnetism at the nanoscale. Magnetism is a quantum effect visible  at  macroscale,  and  is  used  for  many  purposes  technologically.  In  addition  to  the  familiar  permanent  magnets,  magnetism  is  important  in  new  more  efficient  spin-­‐based electronics,  high  temperature  superconductivity,  and  heating  and  cooling  systems  using  magnetic phase transitions. Magnetism arises from the combination of quantum effects and the interaction between electrons. Studying magnetism in materials requires us to calculate the  properties  of  a  manybody  system  of  quantum  particles  at  the  nanoscale,  and  build  models from the bottom up of the magnetic behavior. The more reliable these models, the more powerful the control over magnetism, which enables applications such as those listed above.

This project uses the Mira supercomputer and quantum Monte Carlo (QMC) techniques to directly simulate quantum electrons interacting with one another to create magnetism. The goal  is  to  investigate  to  what  extent  the  QMC  techniques  can  improve  our  description  of  magnetism, with final goal of developing quantitative models of magnetism. The outcome of this project is an improved understanding of the behavior of magnetic materials and will make a step forward in computer-­aided design of next-­generation materials.

Allocations