Skip to content

Argonne Leadership
Computing Facility

Conda on Theta

Conda is a popular package and virtual environment management framework that is used for managing python packages. ALCF has installed this framework, with some default package that users can use for simulation, analysis, and machine learning on Theta.

Getting Started

Adding Conda to your environment

```module load miniconda-3

This will load Python 3. The installed modules are listed at the bottom of this page.

If all the python packages you need are installed, then you can use this module as is. However, if you need custom modules installed, have a look at the section below about Installing Custom Python Modules.

## Probing the environment
Full Conda documentation can be [found]( here, but we'll cover a few useful things here. After the module is loaded, one can list the python modules installed and their versions using ```conda list``

### Adding custom python modules via pip
You can add custom python modules via `pip install --user <module-name>` and this module will be installed in `$HOME/.local/lib/python3.X/site-packages` which is always part of the `sys.path` in python. This can help if you only need a few extra packages or small additions. For big changes see the next section on custom environments.

## Installing Custom Conda Environment
In order to add custom python modules to the conda environment, one must create a custom conda environment. This can be done using (example for python 3.6 conda):
conda create -p --clone $CONDA_PREFIX
This creates a custom environment in the path you specify and installs everything that existed in the base conda installation. Be aware that the actual conda binary will always come from the base installation.

Next you can move into this custom environment with ```source activate </path/to/new/env>```

Now you can install your own packages.
conda install
## Installing Horovod for Distributed Deep Learning
If you install conda manually, or find your conda environment does not have Horovod. We provide a [Conda Channel alcf-theta]( which contains pre-compiled Horovod packages that work with most of the latest PyTorch and Tensorflow versions. In principle you can install Horovod using pip install horovod however this can be a painful process to get the environment correctly lined up to work on Theta. Thus, we provide the precompiled versions. Therefore we suggest using the following on Theta:
conda install -c alcf-theta horovod
## Installed Modules

packages in environment at /soft/datascience/conda/miniconda3/latest:

Name Version Build Channel

_libgcc_mutex 0.1 main _pytorch_select 0.2 gpu_0 _tflow_select 2.3.0 mkl absl-py 0.9.0 py37_0 asn1crypto 1.3.0 py37_0 astor 0.8.0 py37_0 attrs 19.3.0 py_0 backcall 0.1.0 py37_0 blas 1.0 mkl bleach 3.1.0 py37_0 bzip2 1.0.8 h7b6447c_0 c-ares 1.15.0 h7b6447c_1001 ca-certificates 2020.1.1 0 certifi 2019.11.28 py37_0 cffi 1.14.0 py37h2e261b9_0 chardet 3.0.4 py37_1003 cloudpickle 1.2.1 pypi_0 pypi cmake 3.14.0 h52cb24c_0 conda 4.8.2 py37_0 conda-package-handling 1.6.0 py37h7b6447c_0 cryptography 2.8 py37h1ba5d50_0 cudatoolkit 10.0.130 0 cudnn 7.6.5 cuda10.0_0 cycler 0.10.0 py37_0 cython 3.0a0 pypi_0 pypi cytoolz 0.10.1 py37h7b6447c_0 dask-core 2.11.0 py_0 dbus 1.13.12 h746ee38_0 decorator 4.4.1 py_0 defusedxml 0.6.0 py_0 entrypoints 0.3 py37_0 expat 2.2.6 he6710b0_0 fontconfig 2.13.0 h9420a91_0 freetype 2.9.1 h8a8886c_1 gast 0.3.3 py_0 glib 2.63.1 h5a9c865_0 gmp 6.1.2 h6c8ec71_1 google-pasta 0.1.8 py_0 grpcio 1.27.2 py37hf8bcb03_0 gst-plugins-base 1.14.0 hbbd80ab_1 gstreamer 1.14.0 hb453b48_1 h5py 2.10.0 py37h7918eee_0 hdf5 1.10.4 hb1b8bf9_0 horovod 0.18.1 pypi_0 pypi icu 58.2 h9c2bf20_1 idna 2.8 py37_0 imageio 2.6.1 py37_0 importlib_metadata 1.5.0 py37_0 intel-openmp 2019.4 243 ipykernel 5.1.4 py37h39e3cac_0 ipython 7.12.0 py37h5ca1d4c_0 ipython_genutils 0.2.0 py37_0 ipywidgets 7.5.1 py_0 jedi 0.16.0 py37_0 jinja2 2.11.1 py_0 joblib 0.14.1 py_0 jpeg 9b h024ee3a_2 jsonschema 3.2.0 py37_0 jupyter 1.0.0 py37_7 jupyter_client 5.3.4 py37_0 jupyter_console 6.1.0 py_0 jupyter_core 4.6.1 py37_0 keras 2.3.1 0 keras-applications 1.0.8 py_0 keras-base 2.3.1 py37_0 keras-preprocessing 1.1.0 py_1 kiwisolver 1.1.0 py37he6710b0_0 krb5 1.17.1 h173b8e3_0 ld_impl_linux-64 2.33.1 h53a641e_7 libcurl 7.68.0 h20c2e04_0 libedit 3.1.20181209 hc058e9b_0 libffi 3.2.1 hd88cf55_4 libgcc-ng 9.1.0 hdf63c60_0 libgfortran-ng 7.3.0 hdf63c60_0 libmklml 2019.0.5 0 libpng 1.6.37 hbc83047_0 libprotobuf 3.11.4 hd408876_0 libsodium 1.0.16 h1bed415_0 libssh2 1.8.2 h1ba5d50_0 libstdcxx-ng 9.1.0 hdf63c60_0 libtiff 4.1.0 h2733197_0 libuuid 1.0.3 h1bed415_2 libxcb 1.13 h1bed415_1 libxml2 2.9.9 hea5a465_1 markdown 3.1.1 py37_0 markupsafe 1.1.1 py37h7b6447c_0 matplotlib 3.1.3 py37_0 matplotlib-base 3.1.3 py37hef1b27d_0 memory-profiler 0.55.0 pypi_0 pypi mistune 0.8.4 py37h7b6447c_0 mkl 2020.0 166 mkl-dnn 0.19 hfd86e86_1 mkl-service 2.3.0 py37he904b0f_0 mkl_fft 1.0.15 py37ha843d7b_0 mkl_random 1.1.0 py37hd6b4f25_0 mpi4py 3.0.2 pypi_0 pypi nbconvert 5.6.1 py37_0 nbformat 5.0.4 py_0 ncurses 6.2 he6710b0_0 networkx 2.4 py_0 ninja 1.9.0 py37hfd86e86_0 notebook 6.0.3 py37_0 numpy 1.18.1 py37h4f9e942_0 numpy-base 1.18.1 py37hde5b4d6_1 olefile 0.46 py37_0 openssl 1.1.1d h7b6447c_4 pandas 1.0.1 py37h0573a6f_0 pandoc 0 pandocfilters 1.4.2 py37_1 parso 0.6.1 py_0 pcre 8.43 he6710b0_0 pexpect 4.8.0 py37_0 pickleshare 0.7.5 py37_0 pillow 7.0.0 py37hb39fc2d_0 pip 20.0.2 py37_1 prometheus_client 0.7.1 py_0 prompt_toolkit 3.0.3 py_0 protobuf 3.11.4 py37he6710b0_0 psutil 5.6.3 pypi_0 pypi ptflops 0.4 pypi_0 pypi ptyprocess 0.6.0 py37_0 pycosat 0.6.3 py37h7b6447c_0 pycparser 2.19 py37_0 pygments 2.5.2 py_0 pyopenssl 19.1.0 py37_0 pyparsing 2.4.6 py_0 pyqt 5.9.2 py37h05f1152_2 pyrsistent 0.15.7 py37h7b6447c_0 pysocks 1.7.1 py37_0 python 3.7.6 h0371630_2 python-dateutil 2.8.1 py_0 pytorch 1.3.1 cuda100py37h53c1284_0 pytz 2019.3 py_0 pywavelets 1.1.1 py37h7b6447c_0 pyyaml 5.3 py37h7b6447c_0 pyzmq 18.1.1 py37he6710b0_0 qt 5.9.7 h5867ecd_1 qtconsole 4.6.0 py_1 readline 7.0 h7b6447c_5 requests 2.22.0 py37_1 rhash 1.3.8 h1ba5d50_0 ruamel_yaml 0.15.87 py37h7b6447c_0 scikit-image 0.16.2 py37h0573a6f_0 scikit-learn 0.22.1 py37hd81dba3_0 scipy 1.4.1 py37h0b6359f_0 send2trash 1.5.0 py37_0 setuptools 45.2.0 py37_0 sip 4.19.8 py37hf484d3e_0 six 1.14.0 py37_0 sqlite 3.31.1 h7b6447c_0 tensorboard 1.14.0 py37hf484d3e_0 tensorboardx 1.8 pypi_0 pypi tensorflow 1.14.0 mkl_py37h45c423b_0 tensorflow-base 1.14.0 mkl_py37h7ce6ba3_0 tensorflow-estimator 1.14.0 py_0 termcolor 1.1.0 py37_1 terminado 0.8.3 py37_0 testpath 0.4.4 py_0 tk 8.6.8 hbc83047_0 toolz 0.10.0 py_0 torchvision 0.4.2 cuda100py37hecfc37a_0 tornado 6.0.3 py37h7b6447c_3 tqdm 4.42.1 py_0 traitlets 4.3.3 py37_0 urllib3 1.25.8 py37_0 virtualenv 16.7.5 py_0 wcwidth 0.1.8 py_0 webencodings 0.5.1 py37_1 werkzeug 1.0.0 py_0 wheel 0.34.2 py37_0 widgetsnbextension 3.5.1 py37_0 wrapt 1.11.2 py37h7b6447c_0 xz 5.2.4 h14c3975_4 yaml 0.1.7 had09818_2 zeromq 4.3.1 he6710b0_3 zipp 2.2.0 py_0 zlib 1.2.11 h7b6447c_3 zstd 1.3.7 h0b5b093_0 ```


Python for HPC: Best Practices