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PRIOR WORK – PERFORMANCE PORTABILITY 
OF CRK-HACC
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Are CUDA, HIP, and SYCL equally performant across architectures? 

Short answer: Yes!  
when tuned, all three 
models deliver equivalent 
relative peak 
performance across 
NVIDIA, AMD, and Intel 
GPUs for CRK-HACC’s 
dominant kernels.
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RESULTS COMPARING SYCL TO CUDA AND HIP

Aggregate of all GPU Kernels
§ Fast Math was not enabled by default on 

all compilers.

§ Original CUDA ported to SYCL and 
optimized for the Intel GPU.
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OPTIMIZING WARP / WORKGROUP SHUFFLE

Intel® Data Center GPU Max 1550 assembly 
snippets for sycl::select-from-group

Elements are gathered from the registers specified in a0 and 
written into r2 using indirect register access 
...
shl (16|M0)  r24.0<1>:uw  r82.0<2;1,0>:uw  0x2:uw   
add (16|M0)  a0.0<1>:uw   r24.0<1;1,0>:uw  0x640:uw 
mov (16|M0)  r2.0<1>:ud   r[a0.0]<1,0>:ud
...
alternative instruction sequence employing register regioning is 
more performant but not always achievable by the compiler
...
add (16|M0)  r24.0<1>:f  r68.0<1;1,0>:f  -r14.0<0;1,0>:f 
add (16|M0)  r26.0<1>:f  r68.0<1;1,0>:f  -r14.1<0;1,0>:f
add (16|M0)  r30.0<1>:f  r68.0<1;1,0>:f  -r14.2<0;1,0>:f
...

Strategies Explored 
§ Broadcasts

— Restructure loops so that sufficient 
information is known about the 
communication pattern at compile-time to 
generate more efficient assembly. 

§ Shared Local Memory
— Uses sycl::local_accessor to reserve a small 

amount of work-group local memory per sub-
group to communicate instead of via registers. 

§ Optimized Instruction Sequences
— Explicitly code the assembly instructions for 

each communication step needed. 
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SYCL OPTIMIZATION RESULTS 

Aurora
§ Broadcast uses a sub-group size of 16, all 

other variants use a sub-group size of 32

§ Restructuring the loops to use broadcasts also 
allows us to generate fewer atomic 
instructions, more noticeable in the Extras 
and Corrections kernels
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SYCL OPTIMIZATION RESULTS

Polaris Frontier
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Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates. See slide 4 for configuration details.



NEW GOAL

A thin C++ layer can preserve CUDA syntax while enabling single-source SYCL 
portability, allowing more unified backend paths, reduced long-term maintenance 

costs, and retaining competitive performance across GPU vendors.
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MOTIVATION & PROBLEM CONTEXT
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1. Multi-vendor Exascale Landscape
— Frontier = AMD, Aurora = Intel, Perlmutter = NVIDIA; all 

DOE open-science flagship systems use different GPU 
architectures.

— Applications would like to run efficiently everywhere.
— Portability models exist, but rewriting kernels or 

maintaining multiple backends is costly. 
2. Case Study: CRK-HACC

— Production cosmology code with thousands of lines of 
hand-tuned CUDA kernels.

— New physics and optimizations are constantly added; 
repeated porting is not sustainable.

— Prior SYCL ports required large source-to-source 
transformations and additional tuning.

Can we retain the highly tuned CUDA kernel bodies unchanged and 
still run them on SYCL targets?

CUDA 
Kernels

SYCLomatic

SYCL Functor 
Clang-Tool

SYCL Kernels



MAIN IDEA
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A thin, header-only C++ abstraction preserves CUDA kernel structure 
while compiling under either CUDA or SYCL toolchains.

§ No DSL or new abstraction framework to learn.
§ No AST-guided migration tools.
§ No code duplication.
§ Original CUDA syntax preserved.



DESIGN GOAL: PRESERVE CUDA SYNTAX, 
ENABLE SYCL
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Preserve existing CUDA kernel bodies while exposing them to both 
CUDA and SYCL compilers.

§ Key Ideas
— Developers keep writing CUDA-style 

kernels.
— No DSL, no rewriting, no AST/migration 

tools.
— A thin C++ layer replaces the 

__global__ boundary with a functor 
boundary.

— Kernel body is unchanged.

Original CUDA Kernel Code
           │
           ▼
   [ Functor Wrapper ]
           │
   ┌───────┼───────┐
   ▼       ▼       ▼
 CUDA     SYCL    HIP



FUNCTORIZATION: TURNING A CUDA KERNEL 
INTO A CALLABLE OBJECT
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Each CUDA kernel becomes a C++ functor; the body is unchanged
§ We replace:
__global__ void kernel(args...)

with:
struct kernel : KUtilKernelBase 
{ void operator()(args...) }

§ All CUDA constructs inside operator() 
remain intact.

§ Functor instantiated by both CUDA 
and SYCL launchers.

struct updateGeometry : public 
    KUtilKernelBase {
  using 
    KUtilKernelBase::KUtilKernelBase;
  KUTIL_DEVICE void operator()(const 
    int* leafs1, ...) 
  {
    int i = 
      __ldg(&leafs1[blockIdx.x]);
    ...
  }
};

__global__ void updateGeometry(const 
    int* leafs1, ...) {
  int i = __ldg(&leafs1[blockIdx.x]);
  ...
}

Native CUDA



PRESERVING CUDA SEMANTICS THROUGH THE 
BASE CLASS
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The base class binds CUDA-like semantics on SYCL: thread indices, 
warp intrinsics, atomics, fast math.

§ threadIdx, blockIdx, blockDim mapped 
to sycl::nd_item

§ Warp intrinsics mapped to SYCL 
subgroup or SLM operations

§ CUDA math (rsqrtf, __ldg, 
__popc) aliased to SYCL native 
equivalents

§ All inline, header-only; no overhead

// In KUtilKernelBase (SYCL path)
threadIdx = {item.get_local_id(0), 0, 0};
blockIdx = {item.get_group(0), 0, 0};

template <typename T>
inline T __shfl(T v, int lane) {
  auto sg = m_item.get_sub_group();
  return sycl::select_from_group(sg, v, lane);
}

Warp shuffle

Index binding

inline float rsqrtf(float x) {
  return sycl::native::rsqrt(x);
}

Fast math alias



LAUNCH INFRASTRUCTURE: ONE MACRO, TWO 
BACKENDS
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Both CUDA and SYCL use the same launch macro; translation occurs 
entirely in headers
§ InvokeGPUKernel(Kernel, grid, block, 

args...)
§ Under CUDA: expands to a traditional 

<<<...>>> stub
§ Under SYCL: creates a parallel_for 

with matching nd_range
§ Optional shared memory forwarded 

correctly
§ No device relocatable code (RDC) 

needed, avoids overhead

InvokeGPUKernel(updateGeometry, 
grid, block, leafs1, leafs2, xx);

updateGeometry_kernel<<<grid, block>>> 
(leafs1, leafs2, xx);

q.parallel_for(nd_range, [=](sycl::nd_item<1> 
    item {
  updateGeometry(item)(leafs1, leafs2, xx);
});

User code

CUDA backend

SYCL backend



CASE STUDY: CRK-HACC KERNEL SUITE
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§ Five dominant kernels
— Geometry (upGeo)
— Corrections (upCor)
— Extras (upBarEx)
— Acceleration (upBarAc)
— Energy (upBarDu)

§ Together they cover >85% of solver 
time

§ Code Similarity Results between 
native unmodified CUDA and using 
kutil library:
— Line/token Jaccard ≈ 0.87–0.93
— Diff similarity ≈ 0.96–0.98



PERFORMANCE RESULTS: POLARIS (NVIDIA)

15



PERFORMANCE RESULTS: POLARIS (NVIDIA)
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§ CUDA Backend Results
— Functorized CUDA shows 

negligible overhead (<1–2%).
— Confirms the abstraction “compiles 

away” on NVIDIA.
§ SYCL Backend Results on NVIDIA
— kutil SYCL backend matches or 

slightly exceeds SYCLomatic + 
tuning implementation.

— Observed competitive performance 
with CUDA.

§ RDC Study
— We observed RDC can increase 

runtime 1.1× to 2.5×.
— Our design intentionally avoids 

RDC.
— Demonstrates the importance of 

TU-local instantiation.



PERFORMANCE RESULTS: AURORA (INTEL)
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PERFORMANCE RESULTS: AURORA (INTEL)
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§ Shared-local-memory (SLM) shuffles 
outperform subgroup shuffles:
— 2×–3× faster, consistent with prior 

work.

§ kutil kernels show 10–15% 
slowdowns relative to earlier 
SYCLomatic results.

§ Interpreting the Slowdown
— Possible abstraction effects (e.g., 

inlining behavior).
— Almost certainly combined with 

SDK/runtime differences:
• compiler versions
• driver/firmware changes

— Not attributable solely to the 
abstraction; full apples-to-apples 
impossible due to environment drift



PRODUCTIVITY & MAINTAINABILITY IMPACT
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§ For HACC developers
— Zero kernel rewrites.
— SYCL compatibility hidden behind 

headers.
— No dual-backend divergence.
— No SYCLomatic churn for each 

release.

§ For the broader HPC community
— Demonstrates a middle path between:
— full framework adoption 

(RAJA/Kokkos), and
— full source migration to SYCL or HIP.

§ Particularly suited for:
— legacy codes,
— codes with active CUDA development,
— teams prioritizing single-source 

unification.



CONCLUSION
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We show that you can keep your CUDA kernel body and still run on 
SYCL, without migration tools or DSL rewrites.

§ Key outcomes:
— Unified single-source code base for CRK-HACC.
— Minimal abstraction overhead.
— Competitive performance across NVIDIA and Intel GPUs.
— Tiny abstraction footprint, large maintainability benefits.

§ Future work will explore application beyond CRK-HACC.




