
Overview of CRK-HACC
Development Efforts for Aurora

JANUARY 28, 2026

Esteban M. Rangel
Assistant Computational Scientist
Computational Science Division
Argonne National Laboratory

ALCF Developer Sessions

PRIOR WORK – PERFORMANCE PORTABILITY
OF CRK-HACC

2

Are CUDA, HIP, and SYCL equally performant across architectures?

Short answer: Yes!
when tuned, all three
models deliver equivalent
relative peak
performance across
NVIDIA, AMD, and Intel
GPUs for CRK-HACC’s
dominant kernels.

P3HPC SC23

RESULTS COMPARING SYCL TO CUDA AND HIP

Aggregate of all GPU Kernels
§ Fast Math was not enabled by default on

all compilers.

§ Original CUDA ported to SYCL and
optimized for the Intel GPU.

3

OPTIMIZING WARP / WORKGROUP SHUFFLE

Intel® Data Center GPU Max 1550 assembly
snippets for sycl::select-from-group

Elements are gathered from the registers specified in a0 and
written into r2 using indirect register access
...
shl (16|M0) r24.0<1>:uw r82.0<2;1,0>:uw 0x2:uw
add (16|M0) a0.0<1>:uw r24.0<1;1,0>:uw 0x640:uw
mov (16|M0) r2.0<1>:ud r[a0.0]<1,0>:ud
...
alternative instruction sequence employing register regioning is
more performant but not always achievable by the compiler
...
add (16|M0) r24.0<1>:f r68.0<1;1,0>:f -r14.0<0;1,0>:f
add (16|M0) r26.0<1>:f r68.0<1;1,0>:f -r14.1<0;1,0>:f
add (16|M0) r30.0<1>:f r68.0<1;1,0>:f -r14.2<0;1,0>:f
...

Strategies Explored
§ Broadcasts

— Restructure loops so that sufficient
information is known about the
communication pattern at compile-time to
generate more efficient assembly.

§ Shared Local Memory
— Uses sycl::local_accessor to reserve a small

amount of work-group local memory per sub-
group to communicate instead of via registers.

§ Optimized Instruction Sequences
— Explicitly code the assembly instructions for

each communication step needed.

1/29/26 4

SYCL OPTIMIZATION RESULTS

Aurora
§ Broadcast uses a sub-group size of 16, all

other variants use a sub-group size of 32

§ Restructuring the loops to use broadcasts also
allows us to generate fewer atomic
instructions, more noticeable in the Extras
and Corrections kernels

5

SYCL OPTIMIZATION RESULTS

Polaris Frontier

1/29/26 6

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates. See slide 4 for configuration details.

NEW GOAL

A thin C++ layer can preserve CUDA syntax while enabling single-source SYCL
portability, allowing more unified backend paths, reduced long-term maintenance

costs, and retaining competitive performance across GPU vendors.

7

P3HPC SC25

MOTIVATION & PROBLEM CONTEXT

8

1. Multi-vendor Exascale Landscape
— Frontier = AMD, Aurora = Intel, Perlmutter = NVIDIA; all

DOE open-science flagship systems use different GPU
architectures.

— Applications would like to run efficiently everywhere.
— Portability models exist, but rewriting kernels or

maintaining multiple backends is costly.
2. Case Study: CRK-HACC

— Production cosmology code with thousands of lines of
hand-tuned CUDA kernels.

— New physics and optimizations are constantly added;
repeated porting is not sustainable.

— Prior SYCL ports required large source-to-source
transformations and additional tuning.

Can we retain the highly tuned CUDA kernel bodies unchanged and
still run them on SYCL targets?

CUDA
Kernels

SYCLomatic

SYCL Functor
Clang-Tool

SYCL Kernels

MAIN IDEA

9

A thin, header-only C++ abstraction preserves CUDA kernel structure
while compiling under either CUDA or SYCL toolchains.

§ No DSL or new abstraction framework to learn.
§ No AST-guided migration tools.
§ No code duplication.
§ Original CUDA syntax preserved.

DESIGN GOAL: PRESERVE CUDA SYNTAX,
ENABLE SYCL

10

Preserve existing CUDA kernel bodies while exposing them to both
CUDA and SYCL compilers.

§ Key Ideas
— Developers keep writing CUDA-style

kernels.
— No DSL, no rewriting, no AST/migration

tools.
— A thin C++ layer replaces the

__global__ boundary with a functor
boundary.

— Kernel body is unchanged.

Original CUDA Kernel Code
 │
 ▼
 [Functor Wrapper]
 │
 ┌───────┼───────┐
 ▼ ▼ ▼
 CUDA SYCL HIP

FUNCTORIZATION: TURNING A CUDA KERNEL
INTO A CALLABLE OBJECT

11

Each CUDA kernel becomes a C++ functor; the body is unchanged
§ We replace:
__global__ void kernel(args...)

with:
struct kernel : KUtilKernelBase
{ void operator()(args...) }

§ All CUDA constructs inside operator()
remain intact.

§ Functor instantiated by both CUDA
and SYCL launchers.

struct updateGeometry : public
 KUtilKernelBase {
 using
 KUtilKernelBase::KUtilKernelBase;
 KUTIL_DEVICE void operator()(const
 int* leafs1, ...)
 {
 int i =
 __ldg(&leafs1[blockIdx.x]);
 ...
 }
};

__global__ void updateGeometry(const
 int* leafs1, ...) {
 int i = __ldg(&leafs1[blockIdx.x]);
 ...
}

Native CUDA

PRESERVING CUDA SEMANTICS THROUGH THE
BASE CLASS

12

The base class binds CUDA-like semantics on SYCL: thread indices,
warp intrinsics, atomics, fast math.

§ threadIdx, blockIdx, blockDim mapped
to sycl::nd_item

§ Warp intrinsics mapped to SYCL
subgroup or SLM operations

§ CUDA math (rsqrtf, __ldg,
__popc) aliased to SYCL native
equivalents

§ All inline, header-only; no overhead

// In KUtilKernelBase (SYCL path)
threadIdx = {item.get_local_id(0), 0, 0};
blockIdx = {item.get_group(0), 0, 0};

template <typename T>
inline T __shfl(T v, int lane) {
 auto sg = m_item.get_sub_group();
 return sycl::select_from_group(sg, v, lane);
}

Warp shuffle

Index binding

inline float rsqrtf(float x) {
 return sycl::native::rsqrt(x);
}

Fast math alias

LAUNCH INFRASTRUCTURE: ONE MACRO, TWO
BACKENDS

13

Both CUDA and SYCL use the same launch macro; translation occurs
entirely in headers
§ InvokeGPUKernel(Kernel, grid, block,

args...)
§ Under CUDA: expands to a traditional

<<<...>>> stub
§ Under SYCL: creates a parallel_for

with matching nd_range
§ Optional shared memory forwarded

correctly
§ No device relocatable code (RDC)

needed, avoids overhead

InvokeGPUKernel(updateGeometry,
grid, block, leafs1, leafs2, xx);

updateGeometry_kernel<<<grid, block>>>
(leafs1, leafs2, xx);

q.parallel_for(nd_range, [=](sycl::nd_item<1>
 item {
 updateGeometry(item)(leafs1, leafs2, xx);
});

User code

CUDA backend

SYCL backend

CASE STUDY: CRK-HACC KERNEL SUITE

14

§ Five dominant kernels
— Geometry (upGeo)
— Corrections (upCor)
— Extras (upBarEx)
— Acceleration (upBarAc)
— Energy (upBarDu)

§ Together they cover >85% of solver
time

§ Code Similarity Results between
native unmodified CUDA and using
kutil library:
— Line/token Jaccard ≈ 0.87–0.93
— Diff similarity ≈ 0.96–0.98

PERFORMANCE RESULTS: POLARIS (NVIDIA)

15

PERFORMANCE RESULTS: POLARIS (NVIDIA)

16

§ CUDA Backend Results
— Functorized CUDA shows

negligible overhead (<1–2%).
— Confirms the abstraction “compiles

away” on NVIDIA.
§ SYCL Backend Results on NVIDIA
— kutil SYCL backend matches or

slightly exceeds SYCLomatic +
tuning implementation.

— Observed competitive performance
with CUDA.

§ RDC Study
— We observed RDC can increase

runtime 1.1× to 2.5×.
— Our design intentionally avoids

RDC.
— Demonstrates the importance of

TU-local instantiation.

PERFORMANCE RESULTS: AURORA (INTEL)

17

PERFORMANCE RESULTS: AURORA (INTEL)

18

§ Shared-local-memory (SLM) shuffles
outperform subgroup shuffles:
— 2×–3× faster, consistent with prior

work.

§ kutil kernels show 10–15%
slowdowns relative to earlier
SYCLomatic results.

§ Interpreting the Slowdown
— Possible abstraction effects (e.g.,

inlining behavior).
— Almost certainly combined with

SDK/runtime differences:
• compiler versions
• driver/firmware changes

— Not attributable solely to the
abstraction; full apples-to-apples
impossible due to environment drift

PRODUCTIVITY & MAINTAINABILITY IMPACT

19

§ For HACC developers
— Zero kernel rewrites.
— SYCL compatibility hidden behind

headers.
— No dual-backend divergence.
— No SYCLomatic churn for each

release.

§ For the broader HPC community
— Demonstrates a middle path between:
— full framework adoption

(RAJA/Kokkos), and
— full source migration to SYCL or HIP.

§ Particularly suited for:
— legacy codes,
— codes with active CUDA development,
— teams prioritizing single-source

unification.

CONCLUSION

20

We show that you can keep your CUDA kernel body and still run on
SYCL, without migration tools or DSL rewrites.

§ Key outcomes:
— Unified single-source code base for CRK-HACC.
— Minimal abstraction overhead.
— Competitive performance across NVIDIA and Intel GPUs.
— Tiny abstraction footprint, large maintainability benefits.

§ Future work will explore application beyond CRK-HACC.

