JANUARY 28, 2026

Overview of CRK-HACC
Development Efforts for Aurora

Esteban M. Rangel

Assistant Computational Scientist
Computational Science Division
Argonne National Laboratory

S. DEPARTMENT Argonne National Laboratory is a
U.S. Department of Energy laboratory

f ENERGY managed by UChicago Argonne, LLC.

ALCF Developer Sessions

Argonne &

NATIONAL LABORATORY

PRIOR WORK - PERFORMANCE PORTABILITY

OF CRK-HACC

Are CUDA, HIP, and SYCL equally performant across architectures?

A Performance-Portable SYCL Implementation of
CRK-HACC for Exascale

Esteban M. Rangel S. John Pennycook Adrian Pope
erangel@anl.gov john.pennycook@intel.com apope@anl.gov
Argonne National Laboratory Intel Corporation Argonne National Laboratory
USA USA USA
Nicholas Frontiere Zhigiang Ma Varsha Madananth
nfrontiere@anl.gov zhiqiang. ma@intel.com varsha.madananth@intel.com
Argonne National Laboratory Intel Corporation Intel Corporation
USA USA USA
ABSTRACT 1 INTRODUCTION
The first generation of exascale systems will include a variety of The US Department of Energy (DOE) established the Exascale Com-
machine architectures, featuring GPUs from multiple vendors. As puting Project (ECP) as a large, coordinated, multi-year effort within
a result, many developers are interested in adopting portable pro- the DOE high performance computing (HPC) community to ensure
(@) fENERGY CSSmmasiepiioiey

Short answer: Yes!

when tuned, all three
models deliver equivalent
relative peak
performance across
NVIDIA, AMD, and Intel
GPUs for CRK-HACC'’s
dominant kernels.

AAAAAAAAAAAAAAAAAA

RESULTS COMPARING SYCL TO CUDA AND HIP

Aggregate of all GPU Kernels

500 » Fast Math was not enabled by default on
1001 all compilers.
£ w0 = Original CUDA ported to SYCL and
£ o optimized for the Intel GPU.

Frontier Polaris
B cupa (Default) B =p (Defaut)
RY cupa (Fast Math) [RE] HIP (Fast Math) |

ized)

#7"% U.S. DEPARTMENT Argonne National Laboratory is a
) U.S. Department of Energy laboratory A °
W97 of ENERGY mancsea by Uehitagh Abonne e rgonne

AAAAAAAAAAAAAAAAAA

OPTIMIZING WARP /| WORKGROUP SHUFFLE

Intel® Data Center GPU Max 1550 assembly _
snippets for sycl::select-from-group Strategies Explored

= Broadcasts
Elements are gathered from the registers specified in a0 and .-
written into r2 using indirect register access — Restructure loops so that sufficient

information is known about the
shl (16|MO) r24.0<1>:uw r82.0<2;1,0>:uw Ox2:uw

add (16{M8) a@.8<1>:uw r24.8<1:1,05:uw OXG40:un communication pattern at compile-time to
mov (16|M9) r2.0<1>:ud r[a6.0]<1,0>:ud generate more efficient assembly.
él.térnative instruction sequence employing register regioning is

more performant but not always achievable by the compiler " Shared Local Memory

add (16]M®) r24.0<1>:f r68.0<1;1,0>:f -rld.0<0;1,0>:f — Uses sycl::local_accessor to reserve a small
add (16[M®) r26.0<1>:f r68.0<1;1,0>:f -rl4.1<0;1,0>:f amount of work-group local memory per sub-

add (16|MO) r30.0<1>:f r68.0<1;1,0>:f -rl14.2<0;1,0>:f
N group to communicate instead of via registers.

= Optimized Instruction Sequences

— Explicitly code the assembly instructions for
each communication step needed.

#", U.s, DEPARTMENT _ Argonne National Laboratory is a
%), U.S. Department of Energy laboratory
W 1o managed by UChicago Argonne, LLC. rgon ne

AAAAAAAAAAAAAAAAAA

SYCL OPTIMIZATION RESULTS

Aurora
ol gl gl » Broadcast uses a sub-group size of 16, all
. . . .
ool ML B B other variants use a sub-group size of 32
g \ 4 \
k> Y Y W .
ool B BN B = Restructuring the loops to use broadcasts also
=] .
- Ei ii Ei allows us to generate fewer atomic
%; : Y/ ! Y
B ;i gi ;i instructions, more noticeable in the Extras
0.2 \ \ \ i
Y Y \ and Corrections kernels
00 LB \4 \f
. upBarAc upBarAcF upBarDu upBarDuF upBarEx upCor upGeo
Kernel
BB Broadcast EZA Memory, Object [vISA

BNl Memory, 32-bit BBl Select

#% U.S. DEPARTMENT Avgogne National I;%bolaloly isa °
(7)) U.S. Department of Energy laboratory A
‘x@;‘ of ENERGY manage d by UChicago Argonne, LLC rgon ne

nnnnnnnnnnnnnnnnnn

SYCL OPTIMIZATION RESULTS

Polaris Frontier

1.0 1 1.0 1
2 0.8 1 2 0.8 1
=1 =1
2 2
& &
A 0.6 1 m 0.6
= =
.2 2
& 047 041
= =
a a
< <
021 0.2
0.0 - 0.0 -
upBarAc upBarAcF upBarDu upBarDuF upBarEx upCor upGeo upBarAc upBarAcF upBarDu upBarDuF upBarEx upCor upGeo
Kernel Kernel
B8 Broadcast ZZ1 Memory, Object B Broadcast ZZ1 Memory, Object
EXY Memory, 32-bit B Select EXJ Memory, 32-bit EEE Select

#5", U.s. DEPARTMENT_ Argonne National Laboratory is a
o), U.S. Department of Energy laboratory
01, L L rgonne

NiIONAL LABORATORY

NEW GOAL

Preserving CUDA Syntax for SYCL Portability: A Thin C++
Abstraction without Kernel Migration

Esteban Miguel Rangel Humza Qureshi
Argonne National Laboratory (ANL) Argonne National Laboratory (ANL)
Lemont, IL, USA Lemont, IL, USA
erangel@anl.gov humzaqureshis@gmail.com
Abstract Computing Facility (OLCF), Aurora at the Argonne Leadership

Preparing large-scale scientific applications for diverse GPU archi- Com;iuting ljacili_ty (_Il‘:LCF), and.Perlmutter ‘at the Natior}a} El‘l-

P3HPC SC25

A thin C++ layer can preserve CUDA syntax while enabling single-source SYCL

portability, allowing more unified backend paths, reduced long-term maintenance

costs, and retaining competitive performance across GPU vendors.

#"%, U.s. DEPARTMENT Argonne National Laboratory is a
|)| U.S. Department of Energy laboratory
W97 of ENERGY mancsea by Uehitagh Abonne e

MOTIVATION & PROBLEM CONTEXT

Can we retain the highly tuned CUDA kernel bodies unchanged and
still run them on SYCL targets?

1. Multi-vendor Exascale Landscape CUDA

— Frontier = AMD, Aurora = Intel, Perlmutter = NVIDIA; all Kernels
DOE open-science flagship systems use different GPU
architectures.

— Applications would like to run efficiently everywhere. SYCLomatic

— Portability models exist, but rewriting kernels or
maintaining multiple backends is costly.

2. Case Study: CRK-HACC
— Production cosmology code with thousands of lines of [Sg;hg}g?f r]
hand-tuned CUDA kernels.
— New physics and optimizations are constantly added;
repeated porting is not sustainable.
— Prior SYCL ports required large source-to-source
transformations and additional tuning.

#" U.s. DEPARTMENT Argonne National Laboratory is a
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

MAIN IDEA

A thin, header-only C++ abstraction preserves CUDA kernel structure
while compiling under either CUDA or SYCL toolchains.

= No DSL or new abstraction framework to learn.
» No AST-guided migration tools.
= No code duplication.

» Original CUDA syntax preserved.

o

¢ US. DEPARTMENT Argonne National Laboratory is a
) U.5. Department of Energy laboratory
(@) ENERGY SIEHIIE o Argonne &

AAAAAAAAAAAAAAAAAA

DESIGN GOAL: PRESERVE CUDA SYNTAX,
ENABLE SYCL

Preserve existing CUDA kernel bodies while exposing them to both
CUDA and SYCL compilers.

» Key Ideas Original CUDA Kernel Code
— Developers keep writing CUDA-style l
kernels. [Functor Wrapper |
— No DSL, no rewriting, no AST/migration !
tools. v v v
— A thin C++ layer replaces the CUDA SYCL HIP
__global boundary with a functor
boundary.

— Kernel body is unchanged.

#7"% U.S. DEPARTMENT Avgosne National I'.aEbolmoly is a
& B u. epartment of Energy laboratory
10 (@) fENERGY Sosarriystilieroiies 252 Argonne &

AAAAAAAAAAAAAAAAAA

11

FUNCTORIZATION: TURNING A CUDA KERNEL
INTO A CALLABLE OBJECT

Each CUDA kernel becomes a C++ functor; the body is unchanged

= \We replace:
__global void kernel(args...)
with:

struct kernel : KUtilKernelBase
{ void operator()(args...) }

= All CUDA constructs inside operator()
remain intact.

» Functor instantiated by both CUDA
and SYCL launchers.

#"%, U.s. DEPARTMENT Argonne National Laboratory is a
gy) U.S. Department of Energy laboratory
W7 of ENERGY niansoea by Uchicags Atsonne e

__global void updateGeometry(const
int* leafsl, ...) {
int i = 1dg(&leafsl[blockIdx.x]);

- =

struct updateGeometry : public

KUtilKernelBase {

using
KUtilKernelBase: :KUtilKernelBase;

KUTIL DEVICE void operator()(const
int* leafsl, ...)

{
int i =

__ldg(&leafsl[blockIdx.x]);

} Native CUDA
¥ Argonne

12

PRESERVING CUDA SEMANTICS THROUGH THE

BASE CLASS

The base class binds CUDA-like semantics on SYCL: thread indices,

warp intrinsics, atomics, fast math.

= threadldx, blockldx, blockDim mapped

to sycl::nd_item

= \WWarp intrinsics mapped to SYCL
subgroup or SLM operations

» CUDA math (rsqrtf, _ 1ldg,
__popc) aliased to SYCL native
equivalents

= All inline, header-only; no overhead

#"%, U.s. DEPARTMENT Argonne National Laboratory is a
|) U.S. Department of Energy laboratory
D7 of ENERGY rmansocany Uehicags Aponme e

Index binding

// In KUtilKernelBase (SYCL path)
threadldx = {item.get local id(©), 0, 0};
blockIdx = {item.get group(©), 9, 0};

Warp shuffle

template <typename T>
inline T _ shfl(T v, int lane) {
auto sg = m_item.get sub _group();
return sycl::select_from group(sg, v, lane);

}

Fast math alias

inline float rsqrtf(float x) {
return sycl::native::rsqrt(x);

}

AAAAAAAAAAAAAAAAAA

13

LAUNCH INFRASTRUCTURE: ONE MACRO, TWO

BACKENDS

Both CUDA and SYCL use the same launch macro; translation occurs

entirely in headers

» InvokeGPUKernel(Kernel, grid, block,
args...)

= Under CUDA: expands to a traditional
<<<,.>>>stub

» Under SYCL.: creates a parallel_for
with matching nd_range

User code

InvokeGPUKernel (updateGeometry,
grid, block, leafsl, leafs2, xx);

CUDA backend

updateGeometry kernel<<<grid, block>>>
(leafsl, leafs2, xx);

SYCL backend

= Optional shared memory forwarded
correctly

» No device relocatable code (RDC)
needed, avoids overhead

g.parallel for(nd_range, [=](sycl::nd item<1>
item {
updateGeometry(item) (leafsl, leafs2, xx);
})s

#"%, U.s. DEPARTMENT Argonne National Laboratory is a
gy) U.S. Department of Energy laboratory
W7 of ENERGY niansoea by Uchicags Atsonne e

AAAAAAAAAAAAAAAAAA

14

CASE STUDY: CRK-HACC KERNEL SUITE

* Five dominant kernels » Code Similarity Results between
— Geometry (upGeo) native unmodified CUDA and using
kutil library:
— Line/token Jaccard = 0.87-0.93
— Diff similarity = 0.96-0.98

— Corrections (upCor)

— Extras (upBarEx)

— Acceleration (upBarAc)
— Energy (upBarDu)

= Together they cover >85% of solver
time

#% U.S. DEPARTMENT Algosnc National LaEnolmoly isa
2 3 u. epartment of Energy laborator
(@) fENERGY Sosmmriystiiioroiariey Argonne &

AAAAAAAAAAAAAAAAAA

PERFORMANCE RESULTS: POLARIS (NVIDIA)

50 -

40 A

301

20 1

Max execution time (s)

upBarAc upBarDu upBarEx upCor upGeo

3 Original CUDA ZzZ kutil CUDA BE BN kutil SYCL BE 54 SYCLomatic (prev.)

#7Z7%, US.DEPARTMENT Argonn

e Nati
15 (@) SENERGY LSty Argonne &

NATIONAL LABORATORY

PERFORMANCE RESULTS: POLARIS (NVIDIA)

= CUDA Backend Results
— Functorized CUDA shows
negligible overhead (<1-2%).
— Confirms the abstraction “compiles
away” on NVIDIA.

= SYCL Backend Results on NVIDIA

— kutil SYCL backend matches or
slightly exceeds SYCLomatic +
tuning implementation.

— Observed competitive performance
with CUDA.

DEPARTMENT Argonne National Laboratory is a

Fas Us. E
o B U.S. Department of Energy laborator:
16 W07 of ENERGY niansoea by Uone a0 Arsonna LLC.

= RDC Study

— We observed RDC can increase
runtime 1.1% to 2.5x%.

— Our design intentionally avoids
RDC.

— Demonstrates the importance of
TU-local instantiation.

AAAAAAAAAAAAAAAAAA

PERFORMANCE RESULTS: AURORA (INTEL)

u o
o O o

Max execution time (s)
AN
o

30
20 -
10 1
0 upBarAc upBarDu upBarEx upCor upGeo
3 kutil SLM (new) B kutil select_from_group (new)

¥zz2 SYCLomatic SLM (prev.) KXX SYCLomatic select from_group (prev.)

#57% US.DEPARTMENT Argonne National Laboratory is o
| g U.S. Department of Energy laborator,
17 'g@j of ENERGY managed by Uchicago Argonne. LLC, Argon ne °
N

IATIONAL LABORATORY

PERFORMANCE RESULTS: AURORA (INTEL)

» Shared-local-memory (SLM) shuffles = Interpreting the Slowdown

outperform subgroup shuffles: — Possible abstraction effects (e.g.,
— 2x-3x faster, consistent with prior inlining behavior).
work. — Almost certainly combined with
= kutil kernels show 10—15% SDK/runtime differences:
slowdowns relative to earlier * compiler versions
SYCLomatic results. « driver/firmware changes

— Not attributable solely to the
abstraction; full apples-to-apples
impossible due to environment drift

£6y% VS, DEPARTMENT (/7005 riman of Eneray laborato
) Us.DRTATMEmT g Moo
18 (@) of ENERGY sty byeketied Argonne

AAAAAAAAAAAAAAAAAA

e

PRODUCTIVITY & MAINTAINABILITY IMPACT

* For HACC developers
— Zero kernel rewrites.
— SYCL compatibility hidden behind

headers.

— No dual-backend divergence.
— No SYCLomatic churn for each

release.

§=% US.DEPARTMENT A1
9/ of ENERGY

managed by UChicago Argonne, LLC

onne National Laboratory is 2
Department of Energy laboratory

» For the broader HPC community
— Demonstrates a middle path between:

— full framework adoption
(RAJA/Kokkos), and

— full source migration to SYCL or HIP.

» Particularly suited for:
— legacy codes,
— codes with active CUDA development,
— teams prioritizing single-source
unification.

AAAAAAAAAAAAAAAAAA

20

CONCLUSION

We show that you can keep your CUDA kernel body and still run on
SYCL, without migration tools or DSL rewrites.

= Key outcomes:
— Unified single-source code base for CRK-HACC.
— Minimal abstraction overhead.
— Competitive performance across NVIDIA and Intel GPUs.
— Tiny abstraction footprint, large maintainability benefits.

= Future work will explore application beyond CRK-HACC.

#7% U.s. DEPARTMENT Argonne National Laboratory is a

AAAAAAAAAAAAAAAAAA

Argonne &

NATIONAL LABORATORY

