NOVEMBER 5, 2025

HARNESSING THE POWER
OF JULIA ON ALCF'S
POLARIS AND AURORA
SYSTEMS

MICHEL SCHANEN

WHY JULIA?

U.S. DEPARTMENT Argonne National Laboratory is a
| U.S. Department of Energy laboratory r On ne
‘_/* Of ENERGY managed by UChicago Argonne, LLC.

NATIONAL LABORATORY

WHY JULIA

» 1959 Fortran and ALGOL.: Mathematical algorithms on computers
* 1969 C: Flexibility and performance for operating systems

= 1980 C++: Structure support for large code bases

* 1991 Python: Productivity and ease of us

= ?: Productivity, Flexibility/Portability, and Performance

#"% U.S. DEPARTMENT Argonne National Laboratory is a
; @ B U5, Department of Energy laboratory
W5 of ENERGY managed by UChicago Argonne, LLC

Argonne &

® 0.0
ANOTHER TRY lela

= Developed by Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral Shah
» Released in 2012

= Designed for numerical and scientific computing @ X - Optiizs
SWC.
1. Performance I julia o nJ L‘&ﬂ CodeGen ’

— Based on the LLVM compiler

2. Flexibility

— LLVM IR or similar languages are used for a wide variety of hardware and architectures (x86,
CUDA, ROCm, SPIRV...)

— Just-in-time compilation, only code that runs is compiled
— Metaprogramming and reflections (macros)

3. Productivity

— Ease of use coupled with integrated continuous integration, package management, and version
management (Manifest)

— Interactive

#"%, U.s. DEPARTMENT Argonne National Laboratary is a
H @ B U.5. Department of Energy laboratory
wos of ENERGY managed by UChicags Argonne, LLC

Argonne Y

PRODUCTIVITY

Code development and maintenance cost far
exceed research.

Interior Point Method Optimization Solver for Nonlinear Optimization

Ipopt 'C: 100,000

MadNLP julia 6,000
MadNLP has GPU APIs

@*’3"@& U.S. DEPARTMENT Argonne National Laboratory is a
[@] U.5. Department of Energy laboratory
WS of ENERGY managed by UChicaga Argonne, LLC.

Argonne &

NATIONAL LABORATORY

JULIA AND LLVM

Compiler

unparse

B_aqlg_end Machine Instructions

‘i E T
f/’L-* =
. TR 4

LLVM Intermediate Representation (IR)

= Julia leverages LLVM to implement a just-in-time compiled language with native
metaprogramming and code reflection. Code is compiled at runtime.

= Language support for IR and expression tree manipulation

» Advantage: Highly flexible (JIT) C/C++-like performance (LLVM backend)
— Ada, C, C++, D, Delphi, Fortran, Haskell, Julia, Objective-C, Rust, and Swift

» Disadvantage: LLVM was not created with JIT in mind
= See interpreted languages: Trying to reduce compilation (Python)

7%, U.S. DEPARTMENT Argonne National Laboratory s a
: .5, Department of Energy laborator
@) o ENERGY Locomresel ey thoroers Argonne S

nnnnnnnnnnnnnnnnnn

JULIA AND HPC FOUNDATIONS

» Early HPC stack for linear algebra

« Abstraction for high-performance linear

Application algebra (BLAS, LAPACK)
« Abstraction for distributed computing (MPI)
v » Linear algebra for distributed linear algebra
(e.g., PETSc)
M ATL AB P ETSC, Abstraction for high-level algorithms

Sundials

A
v

BLAS, LAPACK,

LINPACK VP!

5. DEPARTMENT Argonne National Laboratory is a

nnnnnnnnnnnnnnnnnn

JULIA AND HPC FOUNDATIONS

» GPU HPC stack for linear algebra

Application

v

MATLAB | FETSC
) Sundials

Portability Layer
Y Y

Kernels MPI

"

“I% U.s. DEPARTMENT Argonne National Laboratary is a
[A U.S. Department of Energy laboratory
E @J of ENERGY nanaged by UChicags Argenne LLLC.

« Abstraction for high-performance linear

algebra (BLAS, LAPACK)

« Abstraction for distributed computing (MPI)
» Linear algebra for distributed linear algebra

(e.g., PETSc)

« Abstraction for high-level algorithms

« Kernel programming

« Portability Layer

« All'in one language with no compilation hell

nnnnnnnnnnnnnnnnnn

JULIA AND HPC SOFTWARE

* Interfaces to C and Python are straightforward

using Libdl "1ibc.<0.6"

libc_path = Libdl.find_library(["libc.so.6", "libc"])

println("Found libc at: $libc_path") Fonil s g s

libc_handle = Libdl.dlopen(libc_path) Ptr{Nothing}(0x00007fa0c173f320)

puts_fptr = Libdl.dlsym(libc_handle, :puts)
Ptr{Nothing}(0x00007fabc1551e50)

julia puts (generic function with 1 method)

julia_puts(s::String)
ccall(
puts_fptr, Hello, C from Julia!

Cint, 21
(Cstring,),
"Hello, C from Julia!"

)

end

julia puts("This is from the Julia wrapper function.")

#7", US.DEPARTMENT Argonne Natianal Laboratary is a
iy B U.5. Department of Energy laboratory
'k@,‘ of ENERGY managed by UChicage Argonne, LLC. Argo n ne A

NATIONAL LABORATORY

JULIA AND HPC SOFTWARE

[:michel@intel-Gsal <maine>
$ julia --project=.

Documentation: https://docs.julialang.org

Type "?" for help, "]2?" for Pkg help.

et 1 2 oot = Julia provides an intricate cross-
T s o e compilation system for providing
A e binary artifacts linking only
against local libc

julia> using oneAPI

g » oneAPI Intel dependencies are

Binary dependencies:

- NEO: 25.35.35096+0 . .

- libigc: 2.18.

R provided precompiled for any
- SPIRV_LLVM Translator: 21.1.1+0

- SPIRV_Tools: 2025.4.0+0 Li n ux SySte m

- oneAPI_Support: 0.9.2+0 (oneMKL v2025.2.0)

Toolchain:
- Julia: 1.12.1
- LLVM: 18.1.7

1 driver:
- D00V -00P-0P00-1874-852e01638918 (v1.3.35096, API v1.6.8)

1 device:
- Intel(R) Arc(TM) A750 Graphics

julia> ||

", U.S. DEPARTMENT Argonne National Laboratory is a
: B U.5. Department of Energy laboratory
k@,‘ of ENERGY managed by UChicage Argonne, LLC. rgO n ne

NATIONAL LABORATORY

PORTABILITY IN JULIA

U.S. DEPARTMENT Argonne National Laboratory is a
U.S. Department of Energy laboratory r On ne
Of ENERGY managed by UChicago Argonne, LLC.

NATIONAL LABORATORY

PORTABILITY IN JULIA

Layers Julia Code

Abstraction

Generation

IR/ C AP CUDA ROCm Intel Compute LLVM

Runtime

« All vendor languages support LLVM IR or SPIRV intermedia representations (IR)
* Only high-level language with support for GPUs

 BLAS, LAPACK etc is dispatched to vendor libraries based on type

* Native performance using vendor toolchain

* However: simplified API for synchronization
» Julia uses one CUDA stream. Kernel executions are ordered and synchronous
 If you really want very high-performance -> go down to C/C++
» Trade-off between user friendliness and performance

“% 1.5, DEFARTMENT Argonne National Laboratary is a
f@ ¥ U.5. Department of Energy laboratory
Wi s of ENERGY managed by UChicags Argonne, LLC

Argonne &

PORTABILITY IN JULIA: KERNELABSTRACTIONS

= Architecture abstraction through
backends

» Generic DSL for SIMD kernels
using Julia macros (e.g., @index,
@kernel)

» Uses GPUCompiler.jl
infrastructure to transform lowered
Julia LLVM IR for each backend

using oneAPI
using KernelAbstractions
using Adapt

backend = oneAPIBackend()
= adapt(backend, ones(10))
= adapt(backend, ones(10))
= similar(a)

@kernel myadd!(c, a, b)
i = @index(Global)
c[i] = a[i] + b[i]

end

kernel! = myadd!(backend)

kernel!(c, a, b; ndrange=length(c))
Argonne &

PORTABILITY IN JULIA: GPUARRAYS

using oneAPI
using Adapt

» Supports the broadcast operator *.’ using LinearAlgebra

» Supplies common methods for
GPU arrays using
KernelAbstractions.jl (e.g., a = adapt(backend, ones(10))
Sort! , accumulate) b = adapt(backend, ones(10))

similar(a)

backend = oneAPIBackend()

sort!(c)

adapt(backend, rand(10,10))
adapt(backend, rand(10))

mul!(similar(x), A, Xx)

#7", US.DEPARTMENT Argonne Natianal Laboratary is a

iy B U.5. Department of Energy laboratory

'x@;‘ of ENERGY managed by UChicage Argonne, LLC. rgo n ne
NATIONAL LABORATORY

PORTABILITY IN JULIA: MPI

using MPI
using oneAPI

= No complex derived type handling !PI.Init()

comm = MPI.COMM_WORLD

n Support of GPU-aware MPI rank = MPI.Comm_rank(comm)

size = MPI.Comm size(comm)

" Even funCtionS can be Sent println("Hello from rank $rank of $size")

DerivedType{VT <: AbstractVector}
v:i:iVT
a::Int
end

a = DerivedType(adapt(backend, ones(19)), 42)

req = MPI.isend(a, comm; dest=(rank + 1) % size)
b = MPI.recv(comm; source=(rank - 1 + size) % size)
MPI.Wait(req)

MPI.Finalize()

% US. DEPARTMENT Argonne Na

rgon tional I'.aEbDralU‘ryis a

| Bl .S, Department o NErt laborator

{B))T ENERGY Cooemsmiortremytboriory Argonne a
NATIONAL LABORATORY

PORTABILITY IN JULIA: LIBRARIES

Example: Krylov.jl

= A portable Krylov solver library with support for NVIDIA, AMD, and Intel GPUs

» Comes with all Krylov algorithms under the sun

» Transparent interfaces to preconditioners through KrylovPreconditioners. jl
= \Works with custom operators (e.g., written in KernelAbstractions. jl)

= Example: Minimizing a function f, @allowscalar (=

using ForwardDiff, Krylov, CUDA
using GPUArrays

xk = -ones(4)
f(x) (x[1] - 1)*2 + (x[2] - 2)*2 + (x[3] - 3)"2 + (x[4] - 4)"2

g(x) = ForwardDiff.gradient(f, x)

H(x) = ForwardDiff.hessian(f, x)
@allowscalar d, stats = cg(H(xk), -g(xk))
xk +=d

4“7, U.S. DEPARTMENT Argonne National Laboratory s a

e Y U.5. Department of Energy laboratory A

'x@;‘ of ENERGY managed by UChicage Argonne, LLC. rgo n ne
NATIONAL LABORATORY

WHY SO FAR ONLY IN JULIA?

= Compute gradient of EICIRERGICEIECON

» CUDA, linear algebra, and forward automatic differentiation are provided by
different packages (separation of concerns) and are composed at runtime
(just-in-time compilation).

* The code for the gradient of f(x) in CUDA is created and only exists at runtime!

using CUDA « Compact code with three off the shelf
using LinearAlgebra packages from the official Julia package
using ForwardDiff reqgistry that leverage 1-4 on the left
f(x) = exp(dot(x,x))

X = Array([2.90,3.0])

f(x)

@code_llvm(f(x))

f(CuArray(x))

@show g = ForwardDiff.gradient(f, CuArray(x))

#7", US.DEPARTMENT Argonne Natianal Laboratary is a

7 A U.5. Department of Energy laboratory

x@; of ENERGY managed by UChicage Argonne, LLC. rgon ne
NATIONAL LABORATORY

NON-PORTABLE VENDOR LIBRARIES
Example: Sparse Direct Linear Solver CUDSS

» CUDSS is the state-of-the-art sparse direct linear solver for GPUs

= No other GPU vendor has a performant sparse direct solver

= Julia cannot avoid vendor specifics, but tries to unify APl as much as possible
» CUDSS Julia interface is maintained by Alexis Montoison (MCS)

* Provides a generic Julia interface for linear solvers/factorizations

» For best performance CUDSS API

#% U.5. DEPARTMENT Argonne National Laboratory is a

e Y U.5. Department of Energy laboratory A

'x@;‘ of ENERGY managed by UChicage Argonne, LLC. rgo n ne
NATIONAL LABORATORY

ARCHITECTURE OVERVIEW

Many core

PAST with GPUs

Back to

CURRENT vector |
pProcessors i B LR 3. i)
(GPUs) -

NVIDIA and Oracle to Build US Department of
Energy’s Largest Al Supercomputer for Scientific FPGASs, wafer

Future Diseovery computer (LLVM

Bold US Investment of 100,000 NVIDIA Blackwell GPUs Kickstarts Era of Agentic Al- based compilers)
Powered Science at Argonne National Laboratory for Public Researchers

_.f“’ %, US.DEPARTMENT Argonne National Laborato
.S, D art tof Enel \ b l
"9, of ENERGY US BeparimentorEn fz o
October 28, 2025

JULIA AT ALCF: POLARIS, AURORA, AND
BEYOND

U.S. DEPARTMENT Argonne National Laboratory is a
U.S. Department of Energy laboratory r On ne
Of ENERGY managed by UChicago Argonne, LLC.

NATIONAL LABORATORY

JULIA AT ALCF: GOAL

Goal

= module load Julia

» Support for GPUs, MPI, filesystems, and large-scale submissions
Julia-specific challenges

» Compiled at runtime requires file access by every process

» Offline compilation of binaries is quirky (Support Julia 1.12)

= Julia’s package manager

= Artifacts and state in Manifest.toml

#7", US.DEPARTMENT Argonne Natianal Laboratary is a

iy B U.5. Department of Energy laboratory

'x@;‘ of ENERGY managed by UChicage Argonne, LLC. rgo n ne
NATIONAL LABORATORY

CURRENT STATUS: EXPERIMENTAL

= Part of official documentation: https://docs.alcf.anl.gov/polaris/programming-
models/julia/

* No system deployment

» Module files and setup are found in https://github.com/anlsys/julia_alcf

07 README B8 MIT license g =

Julia Environment Setup for Polaris and Aurora at ALCF

This repository contains scripts and module files to set up a Julia programming environment on the Polaris and
Aurora supercomputers at the Argonne Leadership Computing Facility (ALCF). The setup includes configuration for
Julia's depot path, module files for easy loading of the Julia environment, and necessary dependencies.

Quick Start
1. Clone this repository to your local machine or directly on the ALCF system.

git clone https://github.com/anlsys/julia_alcf.git L.D

#", U.S. DEPARTMENT Argonne National Laboratory is a

H @ B U.5. Department of Energy laboratory

W of ENERGY managed by UChicage Argonne, LLC. rgo n ne
NATIONAL LABORATORY

https://docs.alcf.anl.gov/polaris/programming-models/julia/
https://docs.alcf.anl.gov/polaris/programming-models/julia/
https://docs.alcf.anl.gov/polaris/programming-models/julia/
https://github.com/anlsys/julia_alcf

SETUP

* Do not install in your home directory!

»git clone https://github.com/anlsys/julia_alcf.git

= cd julia_alcf/Polaris or cd julia_alcf/aurora

= . /setup.sh

= |t will prompt for a JULIA_DEPOT_PATH. Select a folder on a fast filesystem and
accessible by the compute nodes

= [t will install the latest Julia (1.12.1)

= |t will install module files and a LocalPreferences.toml into
JULIA_DEPOT_PATH

#7", US.DEPARTMENT Argonne Natianal Laboratary is a

iy B U.5. Department of Energy laboratory

'x@;‘ of ENERGY managed by UChicage Argonne, LLC. rgo n ne
NATIONAL LABORATORY

https://github.com/anlsys/julia_alcf.git

LOAD JULIA

= module use $JULIA_DEPOT_PATH/modulefiles && module load julia

= Add one line to your shell initialization scripts (e.g., ~/ .bashrc)
— export JULIA_DEPOT_PATH=YOUR_DEPOT_PATH

= All done!

Argonne &

"% U.S. DEPARTMENT Argonne National Laboratory is a
F@ B U.5. Department of Energy laboratory
Wi s of ENERGY managed by UChicags Argonne, LLC

USING JULIA ON AN ALCF CLUSTER

» Clone your project with the Project.toml and do the usual setup on the login nodes
— julia —project=.
—] update

* |[f your code uses CUDA.jl you cannot run it using GPUs on the login nodes!

= Using MPI would precompile your code on every process (potential call from filesystem
team)

= Run the code on 1 node to precompile as much as possible
— cEsub -I -1 select=1,walltime=1:00:00,filesystems=home:eagle -A
PROJECT] —-q debug
— julia -project simulation.jl

» Extreme large-scale runs (not recommended right now, contact us)

— Compress your JULIA_DEPOT_PATH and move it to the local SSDs with the
submission script

#T7% s DEPARTMENT Argonne National Laboratary is a

: B U.5. Department of Energy laboratory A

'x@;‘ of ENERGY managed by UChicage Argonne, LLC. rgon ne
NATIONAL LABORATORY

FUTURE

= \We will support Intel GPUs the best we can through maintenance of oneAPI |l
— https://qgithub.com/JuliaGPU/oneAPL.||

» Support for CUDA is far more mature

» Post-Aurora system will be NVIDIA based
— Great support more unified memory and other CUDA features
— Support for NVIDIA libraries

» Rollout of a system-wide module in the coming months

4“7, U.S. DEPARTMENT Argonne National Laboratory s a

i H U.5. Department of Energy laboratory

x@; of ENERGY managed by UChicage Argonne, LLC. rgo n ne
NATIONAL LABORATORY

https://github.com/JuliaGPU/oneAPI.jl
https://github.com/JuliaGPU/oneAPI.jl

Thank You

#5", U.S. DEPARTMENT Argonne National Laboratary is a o
i & U.5. Department of Energy laborator:
-'a,u@_gé of ENERGY managed by UChicaga A!genne. e Argo n ne

NATIONAL LABORATORY

TALK STRUCTURE

= Why Julia

= Whatis Julia?
- Multiple dispatch, JIT in LLVM, functional programming

= Julia and HPC Foundations
— BLAS
— GPUCompiler.jl, CUDA.jl, oneAPL.jl, KernelAbstractions.j|
— MPI
— Sparse Linear Solver

= Julia on Supercomputers
— Challenges
» Artifacts, local libraries, (pre)compilation, filesystems, and ABls
— Current Solution
+ Julia and system depot_path are provided on local SSDs, user depot_path self-managed on project filesystem
— Best practices
* How to submit job and precompile

= Status and Outlook
— Module load Julia: Adds Julia to path, provides a system depot_path with precompiled oneAPL.jl/CUDA.jl, MPLjl, and HDF5.j|
— Agenda with rollout, links to current setup on Github
— Disclaimer: Experimental, we need feedback

#5", U.S. DEPARTMENT Argonne National Laboratary is a o
e) U.S. Department of Energy laborator:
-’a,@]_; of ENERGY managed by UChicaga .Cg‘;enne. e Argo n ne

NATIONAL LABORATORY

	Slide 1: Harnessing the Power of Julia on ALCF's Polaris and Aurora Systems
	Slide 2: Why Julia?
	Slide 3: Why Julia
	Slide 4: Another Try
	Slide 5: Productivity
	Slide 6: Julia and LLVM
	Slide 7: Julia and HPC Foundations
	Slide 8: Julia and HPC Foundations
	Slide 9: Julia and HPC Software
	Slide 10: Julia and HPC Software
	Slide 11: Portability in Julia
	Slide 12: Portability in Julia
	Slide 13: Portability in Julia: KernelAbstractions
	Slide 14: Portability in Julia: GPUArrays
	Slide 15: Portability in Julia: MPI
	Slide 16: Portability in Julia: Libraries
	Slide 17: Why so far only in Julia?
	Slide 18: Non-Portable vendor Libraries
	Slide 19: Architecture overview
	Slide 20: Julia at ALCF: Polaris, Aurora, and beyond
	Slide 21: JULIA AT ALCF: Goal
	Slide 22: Current Status: Experimental
	Slide 23: Setup
	Slide 24: Load Julia
	Slide 25: Using Julia on an ALCF Cluster
	Slide 26: Future
	Slide 27
	Slide 28: Talk Structure

