
HARNESSING THE POWER
OF JULIA ON ALCF'S
POLARIS AND AURORA
SYSTEMS

NOVEMBER 5, 2025

MICHEL SCHANEN

WHY JULIA?

WHY JULIA

▪ 1959 Fortran and ALGOL: Mathematical algorithms on computers

▪ 1969 C: Flexibility and performance for operating systems

▪ 1980 C++: Structure support for large code bases

▪ 1991 Python: Productivity and ease of us

▪ ?: Productivity, Flexibility/Portability, and Performance

ANOTHER TRY

▪ Developed by Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral Shah

▪ Released in 2012

▪ Designed for numerical and scientific computing

1. Performance

— Based on the LLVM compiler

2. Flexibility

— LLVM IR or similar languages are used for a wide variety of hardware and architectures (x86,
CUDA, ROCm, SPIRV…)

— Just-in-time compilation, only code that runs is compiled

— Metaprogramming and reflections (macros)

3. Productivity

— Ease of use coupled with integrated continuous integration, package management, and version
management (Manifest)

— Interactive

PRODUCTIVITY

Interior Point Method Optimization Solver for Nonlinear Optimization

Solver Language Lines of Code

Ipopt 100,000

MadNLP 6,000

Code development and maintenance cost far
exceed research.

MadNLP has GPU APIs

JULIA AND LLVM

▪ Julia leverages LLVM to implement a just-in-time compiled language with native
metaprogramming and code reflection. Code is compiled at runtime.

▪ Language support for IR and expression tree manipulation

▪ Advantage: Highly flexible (JIT) C/C++-like performance (LLVM backend)
— Ada, C, C++, D, Delphi, Fortran, Haskell, Julia, Objective-C, Rust, and Swift

▪ Disadvantage: LLVM was not created with JIT in mind

▪ See interpreted languages: Trying to reduce compilation (Python)

parse

Machine Instructions

unparse

Frontend Backend

Compiler

LLVM Intermediate Representation (IR)

JULIA AND HPC FOUNDATIONS

▪ Early HPC stack for linear algebra

MATLAB

Application

BLAS, LAPACK,

LINPACK

PETSc,

Sundials

MPI

• Abstraction for high-performance linear

algebra (BLAS, LAPACK)

• Abstraction for distributed computing (MPI)

• Linear algebra for distributed linear algebra

(e.g., PETSc)

• Abstraction for high-level algorithms

JULIA AND HPC FOUNDATIONS

▪ GPU HPC stack for linear algebra

MATLAB

Application

BLAS,

LAPACK,

LINPACK

PETSc,

Sundials

MPI

• Abstraction for high-performance linear

algebra (BLAS, LAPACK)

• Abstraction for distributed computing (MPI)

• Linear algebra for distributed linear algebra

(e.g., PETSc)

• Abstraction for high-level algorithms

• Kernel programming

• Portability Layer

• All in one language with no compilation hell
Portability Layer

Kernels

JULIA AND HPC SOFTWARE

▪ Interfaces to C and Python are straightforward

JULIA AND HPC SOFTWARE

▪ Julia provides an intricate cross-

compilation system for providing

binary artifacts linking only

against local libc

▪ oneAPI Intel dependencies are

provided precompiled for any

Linux system

PORTABILITY IN JULIA

PORTABILITY IN JULIA

• All vendor languages support LLVM IR or SPIRV intermedia representations (IR)

• Only high-level language with support for GPUs

• BLAS, LAPACK etc is dispatched to vendor libraries based on type

• Native performance using vendor toolchain

• However: simplified API for synchronization
• Julia uses one CUDA stream. Kernel executions are ordered and synchronous
• If you really want very high-performance -> go down to C/C++
• Trade-off between user friendliness and performance

Julia Code
GPUArrays.jl + KernelAbstractions.jl

AMDGPU.jlCUDA.jl oneAPI.jl Host/CPU

CUDA
Intel Compute

RuntimeROCm LLVM

Abstraction
Generation

IR / C API

Layers

PORTABILITY IN JULIA: KERNELABSTRACTIONS

▪ Architecture abstraction through

backends

▪ Generic DSL for SIMD kernels

using Julia macros (e.g., @index,
@kernel)

▪ Uses GPUCompiler.jl
infrastructure to transform lowered

Julia LLVM IR for each backend

PORTABILITY IN JULIA: GPUARRAYS

▪ Supports the broadcast operator ‘.’

▪ Supplies common methods for

GPU arrays using

KernelAbstractions.jl (e.g.,

sort!, accumulate)

PORTABILITY IN JULIA: MPI

▪ No complex derived type handling

▪ Support of GPU-aware MPI

▪ Even functions can be sent

PORTABILITY IN JULIA: LIBRARIES

▪ A portable Krylov solver library with support for NVIDIA, AMD, and Intel GPUs

▪ Comes with all Krylov algorithms under the sun

▪ Transparent interfaces to preconditioners through KrylovPreconditioners.jl

▪ Works with custom operators (e.g., written in KernelAbstractions.jl)

▪ Example: Minimizing a function f, @allowscalar

Example: Krylov.jl

WHY SO FAR ONLY IN JULIA?

▪ Compute gradient of

▪ CUDA, linear algebra, and forward automatic differentiation are provided by

different packages (separation of concerns) and are composed at runtime

(just-in-time compilation).

▪ The code for the gradient of 𝑓(𝑥) in CUDA is created and only exists at runtime!

• Compact code with three off the shelf
packages from the official Julia package
registry that leverage 1-4 on the left

NON-PORTABLE VENDOR LIBRARIES

▪ CUDSS is the state-of-the-art sparse direct linear solver for GPUs

▪ No other GPU vendor has a performant sparse direct solver

▪ Julia cannot avoid vendor specifics, but tries to unify API as much as possible

▪ CUDSS Julia interface is maintained by Alexis Montoison (MCS)

▪ Provides a generic Julia interface for linear solvers/factorizations

▪ For best performance CUDSS API

Example: Sparse Direct Linear Solver CUDSS

ARCHITECTURE OVERVIEW

Many core

with GPUs
PAST

CURRENT

Future

Back to

vector

processors

(GPUs)

FPGAs, wafer

computer (LLVM

based compilers)

JULIA AT ALCF: POLARIS, AURORA, AND
BEYOND

JULIA AT ALCF: GOAL

Goal

▪ module load Julia

▪ Support for GPUs, MPI, filesystems, and large-scale submissions

Julia-specific challenges

▪ Compiled at runtime requires file access by every process

▪ Offline compilation of binaries is quirky (Support Julia 1.12)

▪ Julia’s package manager

▪ Artifacts and state in Manifest.toml

CURRENT STATUS: EXPERIMENTAL

▪ Part of official documentation: https://docs.alcf.anl.gov/polaris/programming-

models/julia/

▪ No system deployment

▪ Module files and setup are found in https://github.com/anlsys/julia_alcf

https://docs.alcf.anl.gov/polaris/programming-models/julia/
https://docs.alcf.anl.gov/polaris/programming-models/julia/
https://docs.alcf.anl.gov/polaris/programming-models/julia/
https://github.com/anlsys/julia_alcf

SETUP

▪ Do not install in your home directory!

▪ git clone https://github.com/anlsys/julia_alcf.git

▪ cd julia_alcf/Polaris or cd julia_alcf/aurora

▪ ./setup.sh

▪ It will prompt for a JULIA_DEPOT_PATH. Select a folder on a fast filesystem and

accessible by the compute nodes

▪ It will install the latest Julia (1.12.1)

▪ It will install module files and a LocalPreferences.toml into

JULIA_DEPOT_PATH

https://github.com/anlsys/julia_alcf.git

LOAD JULIA

▪ module use $JULIA_DEPOT_PATH/modulefiles &/ module load julia

▪ Add one line to your shell initialization scripts (e.g., ~/.bashrc)

— export JULIA_DEPOT_PATH=YOUR_DEPOT_PATH

▪ All done!

USING JULIA ON AN ALCF CLUSTER

▪ Clone your project with the Project.toml and do the usual setup on the login nodes
— julia –project=.
—] update

▪ If your code uses CUDA.jl you cannot run it using GPUs on the login nodes!

▪ Using MPI would precompile your code on every process (potential call from filesystem
team)

▪ Run the code on 1 node to precompile as much as possible
— qsub -I -l select=1,walltime=1:00:00,filesystems=home:eagle -A

[PROJECT] -q debug
— julia –project simulation.jl

▪ Extreme large-scale runs (not recommended right now, contact us)
— Compress your JULIA_DEPOT_PATH and move it to the local SSDs with the

submission script

FUTURE

▪ We will support Intel GPUs the best we can through maintenance of oneAPI.jl

— https://github.com/JuliaGPU/oneAPI.jl

▪ Support for CUDA is far more mature

▪ Post-Aurora system will be NVIDIA based

— Great support more unified memory and other CUDA features

— Support for NVIDIA libraries

▪ Rollout of a system-wide module in the coming months

https://github.com/JuliaGPU/oneAPI.jl
https://github.com/JuliaGPU/oneAPI.jl

Thank You

TALK STRUCTURE

▪ Why Julia

▪ What is Julia?

— Multiple dispatch, JIT in LLVM, functional programming

▪ Julia and HPC Foundations

— BLAS

— GPUCompiler.jl, CUDA.jl, oneAPI.jl, KernelAbstractions.jl

— MPI

— Sparse Linear Solver

▪ Julia on Supercomputers

— Challenges

• Artifacts, local libraries, (pre)compilation, filesystems, and ABIs

— Current Solution

• Julia and system depot_path are provided on local SSDs, user depot_path self-managed on project filesystem

— Best practices

• How to submit job and precompile

▪ Status and Outlook

— Module load Julia: Adds Julia to path, provides a system depot_path with precompiled oneAPI.jl/CUDA.jl, MPI.jl, and HDF5.jl

— Agenda with rollout, links to current setup on Github

— Disclaimer: Experimental, we need feedback

	Slide 1: Harnessing the Power of Julia on ALCF's Polaris and Aurora Systems
	Slide 2: Why Julia?
	Slide 3: Why Julia
	Slide 4: Another Try
	Slide 5: Productivity
	Slide 6: Julia and LLVM
	Slide 7: Julia and HPC Foundations
	Slide 8: Julia and HPC Foundations
	Slide 9: Julia and HPC Software
	Slide 10: Julia and HPC Software
	Slide 11: Portability in Julia
	Slide 12: Portability in Julia
	Slide 13: Portability in Julia: KernelAbstractions
	Slide 14: Portability in Julia: GPUArrays
	Slide 15: Portability in Julia: MPI
	Slide 16: Portability in Julia: Libraries
	Slide 17: Why so far only in Julia?
	Slide 18: Non-Portable vendor Libraries
	Slide 19: Architecture overview
	Slide 20: Julia at ALCF: Polaris, Aurora, and beyond
	Slide 21: JULIA AT ALCF: Goal
	Slide 22: Current Status: Experimental
	Slide 23: Setup
	Slide 24: Load Julia
	Slide 25: Using Julia on an ALCF Cluster
	Slide 26: Future
	Slide 27
	Slide 28: Talk Structure

