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WHY JULIA?



WHY JULIA

▪ 1959 Fortran and ALGOL: Mathematical algorithms on computers

▪ 1969 C: Flexibility and performance for operating systems

▪ 1980 C++: Structure support for large code bases

▪ 1991 Python: Productivity and ease of us

▪ ?: Productivity, Flexibility/Portability, and Performance



ANOTHER TRY

▪ Developed by Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral Shah

▪ Released in 2012

▪ Designed for numerical and scientific computing

1. Performance

— Based on the LLVM compiler

2. Flexibility

— LLVM IR or similar languages are used for a wide variety of hardware and architectures (x86, 
CUDA, ROCm, SPIRV…)

— Just-in-time compilation, only code that runs is compiled

— Metaprogramming and reflections (macros)

3. Productivity

— Ease of use coupled with integrated continuous integration, package management, and version 
management (Manifest)

— Interactive



PRODUCTIVITY

Interior Point Method Optimization Solver for Nonlinear Optimization

Solver Language Lines of Code

Ipopt 100,000

MadNLP 6,000

Code development and maintenance cost far 
exceed research.

MadNLP has GPU APIs



JULIA AND LLVM

▪ Julia leverages LLVM to implement a just-in-time compiled language with native 
metaprogramming and code reflection. Code is compiled at runtime.

▪ Language support for IR and expression tree manipulation

▪ Advantage: Highly flexible (JIT) C/C++-like performance (LLVM backend)
—  Ada, C, C++, D, Delphi, Fortran, Haskell, Julia, Objective-C, Rust, and Swift

▪ Disadvantage: LLVM was not created with JIT in mind

▪ See interpreted languages: Trying to reduce compilation (Python)

parse

Machine Instructions

unparse

Frontend Backend

Compiler

LLVM Intermediate Representation (IR)



JULIA AND HPC FOUNDATIONS

▪ Early HPC stack for linear algebra

MATLAB

Application

BLAS, LAPACK, 

LINPACK

PETSc, 

Sundials

MPI

• Abstraction for high-performance linear 

algebra (BLAS, LAPACK)

• Abstraction for distributed computing (MPI)

• Linear algebra for distributed linear algebra 

(e.g., PETSc)

• Abstraction for high-level algorithms



JULIA AND HPC FOUNDATIONS

▪ GPU HPC stack for linear algebra

MATLAB

Application

BLAS, 

LAPACK, 

LINPACK

PETSc, 

Sundials

MPI

• Abstraction for high-performance linear 

algebra (BLAS, LAPACK)

• Abstraction for distributed computing (MPI)

• Linear algebra for distributed linear algebra 

(e.g., PETSc)

• Abstraction for high-level algorithms

• Kernel programming

• Portability Layer

• All in one language with no compilation hell
Portability Layer

Kernels



JULIA AND HPC SOFTWARE

▪ Interfaces to C and Python are straightforward



JULIA AND HPC SOFTWARE

▪ Julia provides an intricate cross-

compilation system for providing 

binary artifacts linking only 

against local libc

▪ oneAPI Intel dependencies are 

provided precompiled for any 

Linux system 



PORTABILITY IN JULIA



PORTABILITY IN JULIA

• All vendor languages support LLVM IR or SPIRV intermedia representations (IR)

• Only high-level language with support for GPUs

• BLAS, LAPACK etc is dispatched to vendor libraries based on type

• Native performance using vendor toolchain

• However: simplified API for synchronization
• Julia uses one CUDA stream. Kernel executions are ordered and synchronous
• If you really want very high-performance -> go down to C/C++
• Trade-off between user friendliness and performance

Julia Code
GPUArrays.jl + KernelAbstractions.jl

AMDGPU.jlCUDA.jl oneAPI.jl Host/CPU

CUDA
Intel Compute 

RuntimeROCm LLVM

Abstraction
Generation

IR / C API

Layers



PORTABILITY IN JULIA: KERNELABSTRACTIONS

▪ Architecture abstraction through 

backends

▪ Generic DSL for SIMD kernels 

using Julia macros (e.g., @index, 
@kernel)

▪ Uses GPUCompiler.jl 
infrastructure to transform lowered 

Julia LLVM IR for each backend



PORTABILITY IN JULIA: GPUARRAYS

▪ Supports the broadcast operator ‘.’

▪ Supplies common methods for 

GPU arrays using 

KernelAbstractions.jl (e.g., 

sort!, accumulate)



PORTABILITY IN JULIA: MPI

▪ No complex derived type handling

▪ Support of GPU-aware MPI

▪ Even functions can be sent



PORTABILITY IN JULIA: LIBRARIES

▪ A portable Krylov solver library with support for NVIDIA, AMD, and Intel GPUs

▪ Comes with all Krylov algorithms under the sun

▪ Transparent interfaces to preconditioners through KrylovPreconditioners.jl

▪ Works with custom operators (e.g., written in KernelAbstractions.jl)

▪ Example: Minimizing a function f, @allowscalar 

Example: Krylov.jl



WHY SO FAR ONLY IN JULIA?

▪ Compute gradient of

▪ CUDA, linear algebra, and forward automatic differentiation are provided by 

different packages (separation of concerns) and are composed at runtime 

(just-in-time compilation).

▪ The code for the gradient of 𝑓(𝑥) in CUDA is created and only exists at runtime!

• Compact code with three off the shelf 
packages from the official Julia package 
registry that leverage 1-4 on the left



NON-PORTABLE VENDOR LIBRARIES

▪ CUDSS is the state-of-the-art sparse direct linear solver for GPUs

▪ No other GPU vendor has a performant sparse direct solver

▪ Julia cannot avoid vendor specifics, but tries to unify API as much as possible

▪ CUDSS Julia interface is maintained by Alexis Montoison (MCS)

▪ Provides a generic Julia interface for linear solvers/factorizations

▪ For best performance CUDSS API

Example: Sparse Direct Linear Solver CUDSS



ARCHITECTURE OVERVIEW

Many core 

with GPUs
PAST

CURRENT

Future

Back to 

vector 

processors 

(GPUs)

FPGAs, wafer 

computer (LLVM 

based compilers)



JULIA AT ALCF: POLARIS, AURORA, AND 
BEYOND



JULIA AT ALCF: GOAL

Goal

▪ module load Julia

▪ Support for GPUs, MPI, filesystems, and large-scale submissions

Julia-specific challenges

▪ Compiled at runtime requires file access by every process

▪ Offline compilation of binaries is quirky (Support Julia 1.12)

▪ Julia’s package manager

▪ Artifacts and state in Manifest.toml



CURRENT STATUS: EXPERIMENTAL

▪ Part of official documentation: https://docs.alcf.anl.gov/polaris/programming-

models/julia/

▪ No system deployment

▪ Module files and setup are found in https://github.com/anlsys/julia_alcf

https://docs.alcf.anl.gov/polaris/programming-models/julia/
https://docs.alcf.anl.gov/polaris/programming-models/julia/
https://docs.alcf.anl.gov/polaris/programming-models/julia/
https://github.com/anlsys/julia_alcf


SETUP

▪ Do not install in your home directory!

▪ git clone https://github.com/anlsys/julia_alcf.git

▪ cd julia_alcf/Polaris or cd julia_alcf/aurora

▪ ./setup.sh

▪ It will prompt for a JULIA_DEPOT_PATH. Select a folder on a fast filesystem and 

accessible by the compute nodes

▪ It will install the latest Julia (1.12.1)

▪ It will install module files and a LocalPreferences.toml into 

JULIA_DEPOT_PATH

https://github.com/anlsys/julia_alcf.git


LOAD JULIA

▪ module use $JULIA_DEPOT_PATH/modulefiles &/ module load julia

▪ Add one line to your shell initialization scripts (e.g., ~/.bashrc)

— export JULIA_DEPOT_PATH=YOUR_DEPOT_PATH

▪ All done!



USING JULIA ON AN ALCF CLUSTER

▪ Clone your project with the Project.toml and do the usual setup on the login nodes
— julia –project=.
— ] update

▪ If your code uses CUDA.jl you cannot run it using GPUs on the login nodes!

▪ Using MPI would precompile your code on every process (potential call from filesystem 
team)

▪ Run the code on 1 node to precompile as much as possible
— qsub -I -l select=1,walltime=1:00:00,filesystems=home:eagle -A 

[PROJECT] -q debug
— julia –project simulation.jl

▪ Extreme large-scale runs (not recommended right now, contact us)
— Compress your JULIA_DEPOT_PATH and move it to the local SSDs with the 

submission script 



FUTURE

▪ We will support Intel GPUs the best we can through maintenance of oneAPI.jl

— https://github.com/JuliaGPU/oneAPI.jl

▪ Support for CUDA is far more mature

▪ Post-Aurora system will be NVIDIA based

— Great support more unified memory and other CUDA features

— Support for NVIDIA libraries

▪ Rollout of a system-wide module in the coming months

https://github.com/JuliaGPU/oneAPI.jl
https://github.com/JuliaGPU/oneAPI.jl


Thank You



TALK STRUCTURE

▪ Why Julia

▪ What is Julia? 

—  Multiple dispatch, JIT in LLVM, functional programming

▪ Julia and HPC Foundations

— BLAS 

— GPUCompiler.jl, CUDA.jl, oneAPI.jl, KernelAbstractions.jl

— MPI

— Sparse Linear Solver

▪ Julia on Supercomputers

— Challenges

• Artifacts, local libraries, (pre)compilation, filesystems, and ABIs

— Current Solution

• Julia and system depot_path are provided on local SSDs, user depot_path self-managed on project filesystem

— Best practices

• How to submit job and precompile

▪ Status and Outlook

— Module load Julia: Adds Julia to path, provides a system depot_path with precompiled oneAPI.jl/CUDA.jl, MPI.jl, and HDF5.jl

— Agenda with rollout, links to current setup on Github

— Disclaimer: Experimental, we need feedback
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