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ALCF Systems Evolution
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CRK-HACC (Esteban Rangel, Adrian Pope, Nick Frontiere, Silvio Rizzi, Vitali Morozov, JD Emberson, Michael Buehlmann)

ESP/HACC PI: Katrin Heitmann
ECP/ExaSky PI: Salman Habib

• CRK-HACC (Hardware/Hybrid Accelerated Cosmology Code) simulates the 

formation of large-scale structures in the Universe over cosmological time. 
• CRK-HACC employs n-body methods for gravity and a novel formulation of 

Smoothed Particle Hydrodynamics (CRK-SPH) for baryons.
• CRK-HACC is a mixed-precision C++ code, with FLOPS-intense sections 

implemented using architecture-specific programming models in FP32.

• CUDA and HIP are maintained as a single source with 
macros, SYCL kernels were translated from CUDA using 

SYCLomatic and custom LLVM-based tools (including 
optimizations for Intel GPUs).

• Figure-of-Merit (FOM) has units of particle-steps per 

second, and single GPU FOM problem used 33 million 
particles per GPU.

• Figure at left shows baryons overlaid on the internal 
energy (proportional to the gas temperature) from 1 MPI 

rank (out of 18,432) of a CRK-HACC simulation carried out 

on 1536 nodes of Aurora.
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PI: Sibendu Som, Argonne National Laboratory
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Engineering / Combustion / Biofuels

2021
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2012

2024 / 2025

2022

PI: Warren Washington, National 
Center for Atmospheric Research

PI: Rao Kotamarthi, 
Argonne National Laboratory
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Earth Systems Science



Argonne Leadership Computing Facility6

PI: Lars Bildsten, University of California, Santa Barbara
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Physics: Stellar Radiation
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PI: Adam Burrows, Princeton University

Astrophysics
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PI: Amanda Randles, Duke 
University
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Arterial Blood Flow



Argonne Leadership Computing Facility9

Materials Science / Molecular

Data courtesy of: Jeff Greeley, Nichols 

Romero, Argonne National Laboratory

Data courtesy of: Paul Kent, 

Oak Ridge National 
Laboratory, Anouar Benali, 
Argonne National Laboratory 

Data courtesy of: 

Subramanian 
Sankaranarayanan, 

Argonne National 

Laboratory
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Visualization Tools on Aurora and Polaris

Visualization Applications

–VisIt

–ParaView

Domain Specific

–VMD

APIs

–VTK: visualization

Utilities

– ImageMagick

– ffmpeg 

–VNC
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ParaView & VisIt vs. vtk

ParaView & VisIt

–General purpose visualization applications

–GUI-based

–Client / Server model  to support remote visualization

–Scriptable / Extendable

–Built on top of vtk (largely)

– In situ capabilities 

vtk

–Programming environment / API

–Additional capabilities, finer control

–Smaller memory footprint

–Requires more expertise (build custom applications)
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In Situ Visualization and 
Analysis
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Five orders of magnitude between compute and I/O capacity 
on Titan Cray system at ORNL

Computation

125 PB/s
Node memory

4.5 PB/s

Node memory

4.5 PB/s

Interconnect

24 TB/s

Storage
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Interconnect

24 TB/s

O(2)

O(2)

O(1)

Slide courtesy Ken Moreland
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In Situ vis and Analysis
Problem:

• FLOPS to I/O Bottleneck

⏤Frontier

▪ Peak Performance: 1.6 EF

▪ Storage: 2-4x Summit’s I/O 2.5TB/s. At best 10TB/s

▪ 5 orders of magnitude difference

⏤Aurora

▪ Peak Performance: 1.012 EF

▪ Storage: 31TB/s

▪ 5 orders of magnitude difference
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Problem

• I/O is too expensive

• Scientists cannot save every timestep, and/or resolution

• Lost cycles: simulation waits while I/O is happening

• Lost discoveries: scientists might miss discoveries

• Solution: In situ visualization and analysis



Argonne Leadership Computing Facility16

What is In Situ vis and analysis

• Traditionally visualization and analysis happens post hoc

⏤E.g.: Data gets saved to the disk, scientist opens it after the 
simulation has ended

• In situ

⏤Data gets visualized/analyzed while in memory.

⏤If zero-copy used, there is no data movement

⏤Ideally the data is on the GPU and stays on the GPU
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In Situ

~2014
PHASTA,  Catalyst, 
Ken Jansen

2018
Nek5000,  

SENSEI

2024

2019

SENSEI + 
Catalyst

nekRS,  
Ascent + 
Catalyst

2024

Palabos+LAMMPS,  
SENSEI + Catalyst, 
bi-directional

2021 - 2024

Ascent + 
Catalyst

HARVEY
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In Situ Frameworks and Infrastructures at ALCF

Name Description

Ascent The Ascent in situ infrastructure is designed for leading-edge supercomputers, and 

has support for both distributed-memory and shared-memory parallelism. 

Catalyst In situ use case library, with an adaptable application programming interface (API), 

that orchestrates the delicate alliance between simulation and analysis and/or 

visualization tasks

Cinema Cinema is an innovative way of capturing, storing, and exploring both extreme scale 

scientific data and experimental data. It is a highly interactive image-based 

approach to data analysis and visualization that promotes investigation of large 

scientific datasets.

Viskores (vtk-M) Viskores is a toolkit of scientific visualization algorithms for emerging processor 

architectures. Viskores supports the fine-grained concurrency for data analysis and 

visualization algorithms required to drive extreme scale computing.
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Launching ParaView on Polaris

1. Connect

2. Fetch Server (first time only)

3. Select Server

4. Connect

4. Enter 
password 
in terminal



www.anl.gov

Joe Insley

insley@anl.gov

ParaView

• www.paraview.org

• docs.alcf.anl.gov/aurora/visualization/paraview/

VisIt

• visit-dav.github.io/visit-website/

• docs.alcf.anl.gov/aurora/visualization/visit/

Additional Resources

Questions?
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