
www.anl.gov

OpenMP on Aurora

Colleen Bertoni, Ye Luo

Argonne Leadership Computing Facility

Argonne Leadership Computing Facility2

Agenda

• Using OpenMP on Aurora (~10 min)

• Why OpenMP?

• Using GPUs with OpenMP Offload

• Demo of OpenMP (~20 min)

• OpenMP 101 and basics on Aurora

• Efficient OpenMP code patterns (~20 min)

• Q&A (~10 min)

Argonne Leadership Computing Facility3

Why OpenMP?

– Open standard for parallel programming with support across vendors

– OpenMP runs on CPU threads, GPUs, SIMD units

– C/C++ and Fortran

– Supported by Intel, Cray, GNU, LLVM compilers and others

– OpenMP offload will be additionally supported on Aurora, Frontier, Perlmutter

• Four Important high-level features to express parallelism

– Fork and join thread parallelism

– SIMD parallelism (added in 4.0)

– Device Offload parallelism (added in 4.0)

– Tasking parallelism (added in 3.0)

• Why instead of a C++ framework?

– Easy to get started and trivial to parallelize loops

– The reduction clause simplifies data reduction

Argonne Leadership Computing Facility4

Using GPUs with OpenMP Offload

Argonne Leadership Computing Facility5

CPU OpenMP parallelism

#pragma omp parallel for private(x) reduction(+:sum)
for(int i=0; i<=num_steps; i++){
 x = (i+0.5)*step;
 sum = sum + 4.0/(1.0+x*x);
 }

Distributes iterations to the threadsSpawn threads in a thread team

Argonne Leadership Computing Facility6

GPU OpenMP parallelism

#pragma omp target teams distribute parallel for private(x) reduction(+:sum)
for(int i=0; i<=num_steps; i++){
 x = (i+0.5)*step;
 sum = sum + 4.0/(1.0+x*x);
 }

Creates teams of threads in the

target device

Distributes iterations to the threads

Argonne Leadership Computing Facility7

• Target construct: offloads

code and data to the device

and runs in serial on the

device

OpenMP Offload Introduction

CPU
GPU

Transfer data and

execution control

Argonne Leadership Computing Facility8

• Target construct: offloads

code and data to the device

and runs in serial on the

device

• Teams construct: creates a

league of teams, each with

one thread, which run

concurrently on SMs (Nvidia

terminology)

OpenMP Offload Introduction

CPU
GPU

Transfer data and

execution control

Argonne Leadership Computing Facility9

• Target construct: offloads

code and data to the device

and runs in serial on the

device

• Teams construct: creates a

league of teams, each with

one thread, which run

concurrently on SMs (Nvidia

terminology)

• Parallel construct: creates

multiple threads in the teams,

each which can run

concurrently

OpenMP Offload Introduction

CPU
GPU

Transfer data and

execution control

Argonne Leadership Computing Facility10

GPU OpenMP parallelism

#pragma omp target teams distribute parallel for private(x) reduction(+:sum)
for(int i=0; i<=num_steps; i++){
 x = (i+0.5)*step;
 sum = sum + 4.0/(1.0+x*x);
 }

Creates teams of threads in the

target device

Distributes iterations to the threads

Argonne Leadership Computing Facility11

OpenMP and data transfer
...

#pragma omp target teams distribute parallel for map(tofrom:a[0:num], b[0:num])

 for (size_t j=0; j<num; j++) {

 a[j] = a[j]+scalar*b[j];

 }

...

…

host device

a[0:num], b[0:num]

a[0:num], b[0:num]

• Maps a and b to

and from the

device.

• These are

shared and

accessible by all

of the threads on

the GPU.

Argonne Leadership Computing Facility12

OpenMP offload compilers and flags on Aurora

• Intel OpenMP offload compilers are in the default environment on Aurora

• You can swap “-fopenmp-targets=spir64” for “-fopenmp-targets=spir64_gen -Xs "-

device pvc” ” for AOT compilation

• https://docs.alcf.anl.gov/aurora/programming-models/openmp-aurora/

Language

MPI Wrapper

Compiler (Underlying

Compiler)

Flag to Turn on

OpenMP Support

and Target CPU

Threads

Additional Flags to Target
GPU Devices

Fortran mpifort (ifx) -fiopenmp -fopenmp-targets=spir64

C mpicc (icx) -fiopenmp -fopenmp-targets=spir64

C++ mpicxx (icpx) -fiopenmp -fopenmp-targets=spir64

Argonne Leadership Computing Facility13

OpenMP on Aurora: Functionality Benchmarks

• OpenMP vs. Offload:

https://github.com/TApplencourt/OvO

• OpenMP Validation and Verification:

https://crpl.cis.udel.edu/ompvv/project/

• Some of the tests are for uncommon
OpenMP directives, but it gives a

general sense that both

implementations are generally passing

• (Part of an upcoming paper in

IWOMP2025)

C/C++ Fortran

Intel (2025.0) Nvidia (23.9) Intel (2025.0) Nvidia (23.9)

on Aurora on Polaris on Aurora on Polaris

OvO 100% (521/521) 70% (367/521) 100% (389/389) 92% (359/389)

OMPVV-4.5 96% (141/147) 89% (131/147) 95% (99/104) 93% (97/104)

OMPVV-5.0 77% (164/213) 35%(75/213) 66% (85/128) 27% (35/128)

OMPVV-5.1 75% (76/101) 12%(12/101) 60% (17/28) 7% (2/28)

OMPVV-5.2 13% (3/24) 25%(6/24) 80% (4/5) 60% (3/5)

OMPVV-6.0 22% (5/22) 4%(1/22) 0% (0/1) 0% (0/1)

https://github.com/TApplencourt/OvO
https://crpl.cis.udel.edu/ompvv/project/

Argonne Leadership Computing Facility16

101 Demo for GPUs

$ git clone https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

$ cd ALCF_Hands_on_HPC_Workshop/programmingModels/OpenMP

$ cd demo

	Slide 1: OpenMP on Aurora
	Slide 2: Agenda
	Slide 3: Why OpenMP?
	Slide 4: Using GPUs with OpenMP Offload
	Slide 5: CPU OpenMP parallelism
	Slide 6: GPU OpenMP parallelism
	Slide 7: OpenMP Offload Introduction
	Slide 8: OpenMP Offload Introduction
	Slide 9: OpenMP Offload Introduction
	Slide 10: GPU OpenMP parallelism
	Slide 11: OpenMP and data transfer
	Slide 12: OpenMP offload compilers and flags on Aurora
	Slide 13: OpenMP on Aurora: Functionality Benchmarks
	Slide 16: 101 Demo for GPUs

