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Scaling on Aurora
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2. Software frameworks
3. LLM training, finetuning, and inference on Aurora
4. Handling Python packages at scale
5. Initializing PyTorch at scale
6. Collective communication at scale



Sustained Scaling of the 3.5B Model

• Sustained performance is for the entire training iterations, including the various communication 
intensive phases as well as I/O. 

• Performance measured with an augmented DeepSpeed profiler to correctly account for model 
parameters

• We achieve 4.11 EF on Aurora 
sustained performance

• Linear scaling in throughput across 
all systems



Megatron-DeepSpeed 4

• Megatron-DeepSpeed is one of the most performant 
frameworks for training language models at trillion 
parameter scale

• Combines the 3D parallelism and fused CUDA kernels 
from NVIDIA’s Megatron-LM with the ZeRO offloading of 
DeepSpeed

• Kernels ported to XPUs to run on Aurora

• FlashAttention-2 was enabled to provide improved 
throughput 

• We employed one rank per GPU-tile and tune the micro 
batch size (MBS) for performance at scale

• We used sequence lengths of 512 and 1024 as the 
target protein families are well captured within this 
range

• ALCF fork of Megatron-DeepSpeed at:
https://github.com/argonne-lcf/Megatron-DeepSpeed

Tensor Parallelism

ZeRo optimizer

https://github.com/argonne-lcf/Megatron-DeepSpeed
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Most of the compute in lower precisions:
• FP16/BF16 depending on the system
• Gradient accumulation and sync in FP32 for numerical stability
Aurora GPUs contain two compute tiles each
• We used “tile as a device” configuration, recommended on Aurora for 

Deep Learning applications
• 6 GPU cards per Node, 2 tiles per card -> 12 ranks per node
• Achieved 107 TFLOPS per tile, 1280 TFLOPS per node
• We did not use model-parallelism for the final results but multiple 

features are tested to work. 
OneCCL communication library used for optimized collectives for AI 
workloads on Intel GPUs, similar to NCCL for Nvidia

Performance details



Other options for LLM training, finetuning, and inference on Aurora: 6

• This work used a fork of Megatron-
DeepSpeed for best performance. 
Original Microsoft repository can also be 
used on Aurora. 

• PyTorch FSDP-based solutions also 
tested to work on Aurora, recommended 
for small to medium scale training and 
finetuning

• Multiple other finetuning and inference 
libraries tested and work is ongoing to 
support more

Detailed instructions for AI workloads at 
ALCF docs:
• https://docs.alcf.anl.gov/aurora/data-

science/frameworks/pytorch/
• https://docs.alcf.anl.gov/aurora/data-

science/frameworks/megatron-
deepspeed/

• https://docs.alcf.anl.gov/aurora/data-
science/inference/libtorch/

https://docs.alcf.anl.gov/aurora/data-science/frameworks/pytorch/
https://docs.alcf.anl.gov/aurora/data-science/frameworks/pytorch/
https://docs.alcf.anl.gov/aurora/data-science/frameworks/megatron-deepspeed/
https://docs.alcf.anl.gov/aurora/data-science/frameworks/megatron-deepspeed/
https://docs.alcf.anl.gov/aurora/data-science/frameworks/megatron-deepspeed/
https://docs.alcf.anl.gov/aurora/data-science/inference/libtorch/
https://docs.alcf.anl.gov/aurora/data-science/inference/libtorch/


Loading Python environments at scale 7

Package management tools such as conda can have tens 
of thousands of small files and Python imports can iterate 
over many of them. 
• Over 30000 files opened on 38400 ranks ->
• >900 million metadata operations can cause Filesystem 

stalls for all users

Many custom changes required an editable installation:
• As a quick solution we packaged the environment and 

broadcasted it with mpi4py

Should not be an issue for normal usage:
• Frameworks module default environment is in the node 

image, does not need to load from the Lustre filesystem
• Copper (co-operative caching layer for scalable parallel 

data movement in Exascale Supercomputers)  
recommended for speeding up loading Python 
environments

Copper can be used at scale to reduce Lustre load

https://docs.alcf.anl.gov/aurora/data-management/copper/copper/
https://docs.alcf.anl.gov/aurora/data-management/copper/copper/


Initializing PyTorch at scale 8

• PyTorch will start a TCP socket-based server on the 
first process that will communicate information 
about collectives and distributed setup

• Software image was based on PyTorch 2.1
• We made some hacks to be able to initialize the 

distributed environment for the scale runs

• Certain settings need to be tuned to allow 
thousands of socket connections Need to configure:

• Number of return sockets
• ulimit –n <somethingbig>

• Number of outstanding requests in the socket 
queue
• Value set in /proc/sys/net/core/somaxconn 

We are investigating changing this globally 
on Aurora. Workarounds exist for now



Collective operations at scale 9

Allreduce of 30k+ ranks with large buffers is nontrivial
• Ring allreduce is able to utilize the bandwidth well 

until a certain point, but does not scale infinitely due 
to the latency component

• We utilized Rabenseifner’s algorithm to get better 
performance at large scale

Performance improvements since:

• Multiple environment variables for OneCCL and 

Libfabric to tune the low-level communication stack

• Documented in ALCF docs

• Improvements in the network stack:

• Tested up to 8192 nodes * 12 ranks. Now able 

to complete an allreduce with good bandwidth 
utilization

Optimization of Collective Reduction Operations, Rolf Rabenseifner

https://fs.hlrs.de/projects/rabenseifner/publ/myreduce_iccs2004_2.pdf
https://docs.alcf.anl.gov/aurora/data-science/frameworks/oneCCL/
https://fs.hlrs.de/projects/rabenseifner/publ/myreduce_iccs2004_2.pdf


Summary 10

• We achieve 4.11 EF on Aurora sustained performance
• Linear scaling in throughput across all systems

Performance lessons in:
• Handling Python environments

• Do not store conda environments on Lustre when launching at scale
• Initializing PyTorch distributed setup

• PyTorch 2.5 brings significant improvements
• Socket limits need to be configured

• Large scale collectives
• Algorithms matter
• Work is ongoing for defining optimal environmental variables in the 

modules we provide
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