
 Remote Workflows
 at ALCF

December 11, 2024

CHRISTINE SIMPSON
Assistant Computational Scientist
Data Services & Workflows Group
ALCF

1

Outline

2

• Motivation & Approach for Remote Compute

• Globus Compute: remote execution of functions

• Configuration of Compute Endpoints

• Globus Flows

• Conclusions

Triggering ALCF Workloads Remotely
Example Cases

3

• ALCF has an increasing number of
workloads that are triggered from outside
the facility

• Use cases include workloads from
experimental facilities like X-ray light
sources (APS), tokamak & neutrino
experiments, and from LLM & inference
services

• Remote triggering could be of use to any
user seeking to coordinate work across
multiple compute facilities or machines

1. Send data to ALCF
2. Run computation on

Polaris
3. Return results to APS

Slide from Ben Brown, DOE, ASCAC, June 20234

ARGONNE NEXUS: LIGHTSOURCE AUTOMATION

• Integration with the data management (DM) system at APS allows workflow to
begin as soon as data is taken

• Workflow moves data from the APS beamline to ALCF and submits job to demand
queue on Polaris

• Results are written to Eagle, where they're reachable via Jupyter, and also returned
to APS for evaluation 5

Approach for Triggering Remote Work

6

• Challenge of triggering remote work
is how to communicate with
scheduler from outside the machine

• Approach: user starts a process on
a login node that communicates
with the scheduler and can reach
out to a remote server/database to
gather work tasks

• Globus Compute & Balsam are two
services at ALCF that use this
model for executing remote work

PBS Scheduler

Compute Nodes

Login
Node

Polaris Compute Space

GLOBUS COMPUTE

Globus Compute
“fire and forget” execution of tasks

• Allows users to launch applications on ALCF
systems remotely from a laptop, or any other
external machine

• Executes python functions; compiled
executables can be executed by wrapping
them in a python function

• Requires setup of a Compute Endpoint on
the target machine (e.g. Polaris) beforehand

• Built on top of Parsl, similar configuration

• Globus Compute functions can be integrated
with data transfers with Globus Flows

8

Translating work to Globus Compute
PBS Batch Script -> Globus Compute Function & Endpoint

#!/bin/bash -l
#PBS -l select=1:system=polaris
#PBS -l place=scatter
#PBS -l walltime=0:30:00
#PBS -q debug
#PBS -A Catalyst
#PBS -l filesystems=home:grand:eagle

cd ${PBS_O_WORKDIR}

Execute app on GPU 0
CUDA_VISIBLE_DEVICES=0 ./hello_affinity

• Example Case: Execute compiled
application on a single GPU

• Goal: run this application many times,
one task per GPU, remotely

• The PBS and resource options will
translate to the Globus Compute
endpoint on the Polaris Login Node

• The application call will translate to a
python function sent from the remote
machine

See Fall Workshop materials for hello_affinity example:
https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop/tree/master/workflows/globus_compute

9

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop/tree/master/workflows/globus_compute

Define
Compute
Function
Python function
wraps executable

def hello_affinity_wrapper(run_directory):
 import subprocess
 import os

 # Create a run directory for the application to execute
 os.makedirs(os.path.expandvars(run_directory), exist_ok=True)
 os.chdir(os.path.expandvars(run_directory))

 # This is the command that calls the compiled executable
 command = “/path/to/hello_affinity"

 # This runs the application command
 res = subprocess.run(command.split(" "),

 stdout=subprocess.PIPE,
 stderr=subprocess.PIPE)

 # Write stdout and stderr to file on Polaris filesystem
 with open("hello.out", "w") as f:
 f.write(res.stdout.decode("utf-8"))
 f.write(res.stderr.decode("utf-8"))

 return res

• Any compiled
executables must be
available on the
target machine

• Any required libraries
must be imported
within the function

• Those libraries must
be available in the
environment running
the endpoint

10

From the Remote
Machine:
Send Functions to
the Endpoint

from globus_compute_sdk import Executor

First, define the function ...
def hello_affinity_wrapper(run_directory):
 ...see previous slide...
 return res

Paste your endpoint id here
endpoint_id = '82e49eaa-3619-4b7c-963e-b020a16537fd'

... then create the executor, ...
with Executor(endpoint_id=endpoint_id) as gce:
 # ... then submit for execution, ...
 tasks = [gce.submit(hello_affinity_wrapper,
 ”$HOME/affinity/{i}”)),
 for i in range(4)]

 # Wait for tasks to return
 for t in tasks:
 print(t.result())

> python submit_affinity_functions.py

• Endpoint ID for Compute
Endpoint is needed

• Function can also be
registered with Globus and
run via a UUID (see
workshop materials for
example)

11

On Polaris Login Node: Configure & Start Endpoint

Create environment and install:
> python -m venv my_env
> source source my_env/bin/activate
> pip install globus-compute-endpoint

Create endpoint:
> globus-compute-endpoint configure --endpoint-config /path/to/my_config.yaml my_endpoint
> globus-compute-endpoint start my_endpoint
> globus-compute-endpoint list
+--------------------------------------+--------------+-----------------------+
| Endpoint ID | Status | Endpoint Name |
+======================================+==============+=======================+
| 82e49eaa-3619-4b7c-963e-b020a16537fd | Running | my_endpoint |
+--------------------------------------+--------------+-----------------------+

12

Endpoint
Configuration
Polaris Example
1 GPU per worker

engine:
 type: GlobusComputeEngine
 available_accelerators: 4 # Assign one worker per GPU
 max_workers_per_node: 4
 cpu_affinity: "list:24-31,56-63:16-23,48-55:8-15,40-47:0-7,32-39"
 prefetch_capacity: 0 # Increase for many more tasks than workers
 max_retries_on_system_failure: 2
 strategy: simple

 job_status_kwargs:
 max_idletime: 300
 strategy_period: 60

 provider:
 type: PBSProProvider
 launcher:
 type: MpiExecLauncher
 # Ensures 1 manger per node, work on all 64 cores
 bind_cmd: --cpu-bind
 overrides: --ppn 1
 account: Catalyst
 queue: debug
 cpus_per_node: 64
 select_options: ngpus=4
 scheduler_options: "#PBS -l filesystems=home:eagle:grand"

 # Node setup: activate environment running endpoint
 worker_init: “source /path/to/my_env“
 walltime: 00:30:00

 nodes_per_block: 1 # nodes per PBS job
 init_blocks: 0
 min_blocks: 0
 max_blocks: 1 # maximum number of PBS jobs

• Contents of my_config.yaml ->
• Contains all the information the

endpoint process needs to submit
jobs to PBS

• Defines resources assigned to each
“worker”

• 1 “worker” runs 1 task at a time
• This example creates 4 workers per

Polaris node, each pinned to a
different GPU

• Different configs can be used for
different worker-resource allocations,
e.g. for multi-node MPI tasks

13

GLOBUS FLOWS

Globus Flows
Creating Workflows with Globus Compute Tasks

• Globus Flows is an automated and
managed workflow service hosted
by Globus

• Built on top of AWS step functions

• Hosted in the cloud in the Globus
Service

• A ‘flow’ can couple actions of
different types, e.g. a file transfer
and a compute task

15

The Globus Flows Service

Globus Service

User’s Flow

Remote User/Facility ALCF

/eagle

Globus Compute Endpoint

Globus Transfer Endpoint

16

The Globus Flows Service

Globus Service

User’s Flow

Remote User/Facility ALCF

/eagle

Globus Compute Endpoint

Globus Transfer Endpoint

16

The Globus Flows Service

Globus Service

User’s Flow

Remote User/Facility ALCF

/eagle

Globus Compute Endpoint

Globus Transfer Endpoint

16

Example Flow Actions
• Transfer - transfer files between two Globus collections

• Compute - execution of a function by a Globus compute endpoint

• Choice - an if/else decision that will move the flow to different actions depending
on outcome

• Delete - deletes files from a Globus collection

• Set Permissions - changes permissions of files on Globus collection

• … and more

Example flows:
https://github.com/globus/globus-flows-trigger-examples/tree/main

17

https://github.com/globus/globus-flows-trigger-examples/tree/main

Flow Definition
Example: 2 step
transfer-compute flow

{
 "Comment": "Transfer and process files by invoking a Globus Compute function",
 "StartAt": "TransferFiles",
 "States": {
 "TransferFiles": {
 "Comment": "Transfer files",
 "Type": "Action",
 "ActionUrl": "https://actions.automate.globus.org/transfer/transfer",
 "Parameters": {
 "source_endpoint_id.$": "$.input.source.id",
 "destination_endpoint_id.$": "$.input.destination.id",
 "transfer_items": [
 {
 "source_path.$": "$.input.source.path",
 "destination_path.$": "$.input.destination.path",
 "recursive.$": "$.input.recursive_tx"
 }
]
 },
 "ResultPath": "$.TransferFiles",
 "WaitTime": 60,
 "Next": "ProcessFiles"
 },
 "ProcessFiles": {
 "Comment": "Process files - generate thumbnails",
 "Type": "Action",
 "ActionUrl": "https://compute.actions.globus.org",
 "Parameters": {
 "endpoint.$": "$.input.compute_endpoint_id",
 "function.$": "$.input.compute_function_id",
 "kwargs.$": "$.input.compute_function_kwargs"
 },
 "ResultPath": "$.ProcessFiles",
 "WaitTime": 180,
 "End": true
 }
 }
}

• Flow expressed as
JSON object

• Two actions in this case

• Transfer Action
TransferFiles

• Compute Action
ProcessFiles

• Variables in the JSON
denoted with $ syntax

18

Monitoring Flow
Globus Web UI

Example link —>

19

https://app.globus.org/runs/c682febf-f4e1-4c32-946f-5ae39404058c/logs

Submitting Flow
A Brief Overview

• Steps to Submitting a Flow
to the Globus Service

• Register functions
• Start Globus Compute

endpoints
• Register the Flow
• Create a Flows Client
• Submit Flows inputs

flow_input = {
 "input": {
 "recursive_tx": True,
 "source": {
 "id": source_transfer_endpoint_id,
 "path": "/src_collection/path/to/data"
 },
 "destination": {
 "id": dest_transfer_endpoint_id,
 "path": "/dest_collection/path/to/data"
 },
 "compute_function_id": process_files_function_id,
 "compute_endpoint_id": compute_endpoint_id,
 "compute_function_kwargs": {}
 }
}
run = specific_flow_client.run_flow(body=flow_input)

• See Documentation for details: https://globus-sdk-python.readthedocs.io/en/stable/
services/flows.html

• Example Notebook with a transfer-compute flow: https://github.com/globus-labs/
tomography_flow/blob/main/Tomography-flow.ipynb

20

https://globus-sdk-python.readthedocs.io/en/stable/services/flows.html
https://globus-sdk-python.readthedocs.io/en/stable/services/flows.html
https://github.com/globus-labs/tomography_flow/blob/main/Tomography-flow.ipynb
https://github.com/globus-labs/tomography_flow/blob/main/Tomography-flow.ipynb
https://github.com/globus-labs/tomography_flow/blob/main/Tomography-flow.ipynb

Automation
Service accounts, clients, and secrets

• Users of Globus Flows are sometimes launching flows from remote
services

• In these cases, ALCF offers service accounts that allow for easy
maintenance of automated remote workflows

• Globus also offers automated authentication with client secrets (https://
globus-sdk-python.readthedocs.io/en/stable/examples/
client_credentials.html)

21

https://globus-sdk-python.readthedocs.io/en/stable/examples/client_credentials.html
https://globus-sdk-python.readthedocs.io/en/stable/examples/client_credentials.html
https://globus-sdk-python.readthedocs.io/en/stable/examples/client_credentials.html

Conclusions
Remote Workflows at ALCF
• Execution of remote workflows are increasingly common on ALCF machines

• Users have had success using Globus Compute and Globus Flows to execute remote workflows
at ALCF

• Globus compute is a “fire-and-forget” function execution service that will send work to Globus
Compute Endpoints

• There are many ways of configuring Globus Compute Endpoints on Polaris depending on the
resource needs of the application (similar to Parsl)

• Globus compute functions can be incorporated in Globus Flows. This allows for the coordination
of compute tasks with data management tasks from the Globus service in the cloud

• Tools like ALCF service accounts and Globus confidential clients and secrets are available to
facilitate automation for use cases that require it

22

23

