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Agenda
• MPI Background
• Costs of Unintended Synchronization

• Nonblocking vs. Asynchronous
• GPU-aware MPI
• MPI on ALCF Polaris and Aurora
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What is MPI?
• MPI: Message Passing Interface

⏤The MPI Forum organized in 1992 with broad participation by:
§ Vendors: IBM, Intel, TMC, SGI, Convex, Meiko
§ Portability library writers: PVM, p4
§ Users: application scientists and library writers
§ MPI-1 finished in 18 months

⏤ Incorporates the best ideas in a “standard” way
§ Each function takes fixed arguments
§ Each function has fixed semantics

o Standardizes what the MPI implementation provides and what the application can and cannot expect
o Each system can implement it differently as long as the semantics match

• MPI is not…
⏤a language or compiler specification
⏤a specific implementation or product

4
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MPI-1
• MPI-1 supports the classical message-passing programming model: basic point-to-point 

communication, collectives, datatypes, etc.
• MPI-1 was defined (1994) by a broadly based group of parallel computer vendors, computer scientists, 

and applications developers.
⏤2-year intensive process

• Implementations appeared quickly and now MPI is taken for granted as vendor-supported software on 
any parallel machine.

• Free, portable implementations exist for clusters and other environments (MPICH, Open MPI)

55
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Following MPI Standards
• MPI-2 was released in 1997

⏤Several new features including MPI + threads, MPI-I/O, remote memory access functionality and 
many others

• MPI-2.1 (2008) and MPI-2.2 (2009) were released with some corrections to the standard and 
small features

• MPI-3 (2012) several new features
⏤Updated RMA chapter, nonblocking collectives, Fortran 2008 binding …

• MPI-3.1 (2015) minor corrections and features
• MPI-4 (June 2021) several new features

⏤Large count, Persistent collectives, MPI Sessions, Partitioned Communication, MPI_T Events, …

• MPI-4.1 (November 2023) minor corrections and features, latest version of standard
• The Standard itself:

⏤at http://www.mpi-forum.org
⏤All MPI official releases, in both PDF and HTML
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http://www.mpi-forum.org/
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Important considerations while using MPI
• All parallelism is explicit: the programmer is responsible for correctly identifying parallelism and 

implementing parallel algorithms using MPI constructs
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Web Pointers
• MPI Standard : http://www.mpi-forum.org/docs/
• MPI Forum : http://www.mpi-forum.org/

• MPI implementations: 
⏤MPICH : http://www.mpich.org/
⏤MVAPICH : http://mvapich.cse.ohio-state.edu/ 
⏤Intel MPI: http://software.intel.com/en-us/intel-mpi-library/
⏤Microsoft MPI: https://docs.microsoft.com/en-us/message-passing-interface/microsoft-mpi
⏤Open MPI : http://www.open-mpi.org/
⏤IBM Spectrum MPI, Cray MPICH, ParaStation MPI, …

• General MPI Education
⏤https://rookiehpc.org/mpi/
⏤https://mpitutorial.com/tutorials/
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Tutorial Books on MPI
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Basic MPI Advanced MPI, including MPI-3
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This Tutorial
• Assume familiarity with MPI point-to-point and collective messaging
• Highlight a few important usage issues for performance

⏤Example codes in C

• GPU-aware MPI

• Polaris and Aurora information
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Costs of Unintended Synchronization
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Hot Spots
• Simple operations can give surprising performance behavior
• Examples arise even in common grid exchange patterns

• Message passing illustrates problems present even in shared memory
⏤Blocking operations may cause unavoidable stalls

12
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Mesh Exchange
• Exchange data on a mesh
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Example Code

• for (i = 0; i < n_neighbors; i++) {
   MPI_Send(sbuf[i], len, MPI_DOUBLE, nbr[i], tag, comm);
}
for (i = 0; i < n_neighbors; i++) {
   MPI_Recv(rbuf[i], len, MPI_DOUBLE, nbr[i], tag, comm, status);
}

• See unintended-sync/unintended-sync1.c

14
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Deadlocks!
• All of the sends may block, waiting for a matching receive (will for large enough messages)
• The variation of
if (has down nbr) {
    MPI_Send( … down … );
}
if (has up nbr) {
    MPI_Recv( … up … );
}
…
sequentializes (all except the processes on the bottom of the mesh)

• See unintended-sync/unintended-sync2.c

15



Argonne Leadership Computing Facility16

Sequentialization
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Fix 1: Use Irecv
• for (i = 0; i < n_neighbors; i++) {
   MPI_Irecv(rbuf[i], len, MPI_DOUBLE, nbr[i], tag, comm, &requests[i]);
} 
for (I = 0; I < n_neighbors; i++) {
   MPI_Send(sbuf, len, MPI_DOUBLE, nbr[i], tag, comm);
}
MPI_Waitall(n_neighbors, requests, statuses);

• Does not perform well in practice.  Why?

• See unintended-sync/unintended-sync3.c
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Timeline
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Why?
• Sending is delayed when there is contention at the receiver
• Available bandwidth is being wasted

• Same thing would happen if using memcpy and shared memory
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Fix 2: Use Isend and Irecv
for (i = 0; i < n_neighbors; i++) {
 MPI_Irecv(rbuf[i], len, MPI_DOUBLE, nbr[i], tag, comm, &requests[i]);
}
for (i = 0; i < n_neighbors; i++) {
 MPI_Isend(sbuf[i], len, MPI_DOUBLE, nbr[i], tag, comm,      
     &requests[n_neighbors+i]);
}
MPI_Waitall(2*n_neighbors, requests, statuses);

• See unintended-sync/unintended-sync4.c
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Timeline with Isend-Irecv
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Note processes 4 and 7 are the only interior processes; these perform more 
communication than the other processes. Overall communication time is ~30% 
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Lesson: Defer Synchronization
• Send-receive accomplishes two things:

⏤Data transfer
⏤Synchronization

• In many cases, there is more synchronization than required
• Consider the use of nonblocking operations and MPI_WAITALL to defer synchronization

⏤Effectiveness depends on how data is moved by the MPI implementation
⏤E.g., If large messages are moved by blocking RMA operations “under the covers,” the implementation can’t 

adapt to contention at the target processes, and you may see no benefit.
⏤This is more likely with larger messages

22
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Nonblocking vs. Asynchronous

23
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Nonblocking MPI Communication
• Nonblocking communication allows for communication overlap

⏤Overlap with other communication (as seen in previous example)
⏤Overlap with computation

• Overlap with communication
⏤Calling some variant of MPI_TEST or MPI_WAIT will progress outstanding communication
⏤Actual overlap depends on underlying implementation, but in general you will observe better communication 

performance when grouping multiple requests together. “Message rate” is a common benchmark.

• Overlap with computation
⏤ If application threads are busy doing computation, communication might not progress in the background. Referred to 

as the “weak progress model” in the MPI community.
⏤Communication progress characteristics are dependent on many factors, but not limited to:

§ System architecture
§ MPI library configuration and implementation
§ Runtime parameters
§ Process locality
§ Communication arguments, e.g. datatypes
§ …
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Example Code
•  if (rank == 0) {
 MPI_Isend(buf, COUNT, MPI_BYTE, 1, 0, MPI_COMM_WORLD, &req);
  } else if (rank == 1) {
 MPI_Irecv(buf, COUNT, MPI_BYTE, 0, 0, MPI_COMM_WORLD, &req);
  }
  do_work(&req);
  MPI_Wait(&req, MPI_STATUS_IGNORE);

• See progress/async1.c in examples
⏤async1 work is a no-op
⏤async1-s work sleeps for 0.1s
⏤async1-t work sleeps for 0.05s, calls MPI_TEST, sleeps another 0.05s
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Example Code
Single node of Polaris

Two nodes of Polaris



Argonne Leadership Computing Facility27

Lesson: Call MPI to make progress
• Nonblocking != Asynchronous
• Some, but not all communication will progress without user intervention

⏤E.g. rendezvous protocol implemented in software without progress thread(s)

• Break up your computation phases with occasional calls to MPI_TEST to give MPI a chance to drive 
communication
⏤Free up internal resources
⏤Advance protocols controlled in user space
⏤There is little penalty for calling MPI_TEST when strong progress is provided by the implementation

27
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GPU-aware MPI

28
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Programming Model for Accelerators
• GPUs are well suited for fine grain data level parallelism

• Shared Memory, Single Instruction Multiple Data (SIMD) 
model

• Many available compute platforms and programming 
frameworks (focus on their memory model and interaction 
with MPI)
⏤NVIDIA CUDA
⏤AMD ROCm & HIP
⏤OpenMP
⏤OpenACC (mentioned but not covered)
⏤OpenCL & SYCL GPU
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Unified Virtual Addressing (UVA)
• UVA is a memory address management system supported in 

modern 64-bit architectures
⏤Requires device driver support

• The same virtual address space is used for all processors, 
host or devices

• No distinction between host and device pointers

• The user can query the location of the data allocation given a 
pointer in the unified virtual address space and the 
appropriate GPU runtime library query APIs (“GPU-aware” 
MPI library)

UVA: Single virtual address space 
for the host and all devices

GPU

0x000 ..

CPU GPU

            .. 0xFFF
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Using MPI with GPU memory
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GPUs have a separate physical memory subsystem 
Question: How to move data between GPUs with MPI?

Answer: It depends on what GPU runtime, what hardware and what MPI 
implementation you are using

Simple answer: For modern GPUs and GPU-aware MPI implementations, “just 
like you would with non-GPU memory”
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Lesson: Let MPI do the work
• There are many mechanisms for moving data efficiently to/from GPU memory
• MPI abstracts away the nitty-gritty details. For example:

⏤GDRCopy for fast access to GPU memory from the CPU (when desirable)
⏤GPUDirectRDMA for communicating GPU data across the network without extra copies to the CPU
⏤GPU inter-process Communication (IPC) for communicating between processes on a node with one or more 

GPU devices. Utilize special node-level interconnects like NVLink and XeLink
⏤Each of these complex techniques is employed by modern MPI libraries

• Notes for performance
⏤Device allocations are most common, therefore the most optimized. Shared or managed allocations will also 

work, but may not be best.
⏤ If you suspect MPI is not performing to expectations, work with your MPI experts to identify and investigate the 

problem
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Unified Virtual Addressing (UVA)
• UVA is a memory address management system supported in 

modern 64-bit architectures
⏤Requires device driver support

• The same virtual address space is used for all processors, 
host or devices

• No distinction between host and device pointers

• The user can query the location of the data allocation given a 
pointer in the unified virtual address space and the 
appropriate GPU runtime library query APIs (“GPU-aware” 
MPI library) UVA: Single virtual address space 

for the host and all devices

GPU
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CPU GPU

            .. 0xFFF
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Future directions in MPI + GPU

34

double *dev_buf;
cudaMalloc(&dev_buf, size);

if(my_rank == sender) {
    gpu_kernel<<<grid,block,0,stream0>>>(dev_buf);
 cudaStreamSynchronization(stream0);
    MPI_Isend(dev_buf, size, MPI_DOUBLE, receiver, 0, comm, req);
} else {
    MPI_Recv(dev_buf, size, MPI_DOUBLE, sender, 0, comm, &status);
    gpu_kernel<<<..>>>(dev_buf);
}

• General purpose GPU programming is still evolving

• Synchronization between GPUs and CPUs/NICs is a bottleneck
⏤Pinning memory incurs huge overhead (up to millisecond)
⏤cudaStreamSynchronization et al. are expensive

• Potential solutions
⏤Memory type hints
⏤Stream-aware MPI
⏤ In-kernel triggering
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Polaris
• By default, Cray MPICH is not GPU-aware. Must be explicitly enabled by the user. Why?

⏤GPU-awareness adds overhead. MPI must determine what type of memory a pointer represents.
⏤ In short, CPU-based communication gets better performance by disabling GPU-awareness

• How to enable GPU-aware Cray MPICH
⏤export MPICH_GPU_SUPPORT_ENABLED=1
⏤module load craype-accel-nvidia80
⏤cc –cuda foo.cu –o foo

• Notes on usage
⏤Use the official Cray compiler wrappers cc, CC, ftn. mpicc, mpicxx, mpifort may be present but 

WILL NOT WORK for GPU applications.
⏤Cray MPICH is based on the MPICH 3.4.x release series. Supports MPI 3.1 standard.
⏤Be aware of which ranks use which GPUs

§ https://github.com/argonne-lcf/GettingStarted/tree/master/Examples/Polaris/affinity_gpu for scripts to set 
GPU affinity for MPI ranks

§ Also try saxpy.cu example on Polaris to practice
⏤Take care to synchronize CUDA stream before passing buffers to MPI

https://github.com/argonne-lcf/GettingStarted/tree/master/Examples/Polaris/affinity_gpu
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Aurora
• Aurora MPICH is GPU-aware by default

⏤ The expectation is that apps running on Aurora use the GPU
⏤Aurora MPICH is purpose built for Aurora. It is a separate distribution from the widely-used Intel MPI.

• How to disable GPU-aware Aurora MPICH
⏤ export MPIR_CVAR_ENABLE_GPU=0

• Notes on usage
⏤Aurora MPICH modules

§ mpich/icc-all-pmix-gpu/20240717
§ mpich/icc-all-debug-pmix-gpu/20240717

⏤Upstream MPICH builds also available, e.g.
§ mpich/dbg/git.063ef64
§ mpich/opt/git.063ef64

⏤Aurora MPICH is based on MPICH 4.2.x series. Supports MPI-4.1 standard.
⏤ mpiexec is Cray PALS, same as Polaris

§ -l option labels stdout/stderr with node,rank information. Useful for debugging.
⏤Be aware of which ranks use which GPUs

§ https://docs.alcf.anl.gov/aurora/running-jobs-aurora/#binding-mpi-ranks-to-gpus

https://docs.alcf.anl.gov/aurora/running-jobs-aurora/
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Questions?


