

MPI

October 29, 2024
Ken Raffenetti
Research Software Engineer
Mathematics and Computer Science Division

Argonne Leadership Computing Facility3

Agenda
• MPI Background
• Costs of Unintended Synchronization

• Nonblocking vs. Asynchronous
• GPU-aware MPI
• MPI on ALCF Polaris and Aurora

Argonne Leadership Computing Facility4

What is MPI?
• MPI: Message Passing Interface

⏤The MPI Forum organized in 1992 with broad participation by:
§ Vendors: IBM, Intel, TMC, SGI, Convex, Meiko
§ Portability library writers: PVM, p4
§ Users: application scientists and library writers
§ MPI-1 finished in 18 months

⏤ Incorporates the best ideas in a “standard” way
§ Each function takes fixed arguments
§ Each function has fixed semantics

o Standardizes what the MPI implementation provides and what the application can and cannot expect
o Each system can implement it differently as long as the semantics match

• MPI is not…
⏤a language or compiler specification
⏤a specific implementation or product

4

Argonne Leadership Computing Facility5

MPI-1
• MPI-1 supports the classical message-passing programming model: basic point-to-point

communication, collectives, datatypes, etc.
• MPI-1 was defined (1994) by a broadly based group of parallel computer vendors, computer scientists,

and applications developers.
⏤2-year intensive process

• Implementations appeared quickly and now MPI is taken for granted as vendor-supported software on
any parallel machine.

• Free, portable implementations exist for clusters and other environments (MPICH, Open MPI)

55

Argonne Leadership Computing Facility6

Following MPI Standards
• MPI-2 was released in 1997

⏤Several new features including MPI + threads, MPI-I/O, remote memory access functionality and
many others

• MPI-2.1 (2008) and MPI-2.2 (2009) were released with some corrections to the standard and
small features

• MPI-3 (2012) several new features
⏤Updated RMA chapter, nonblocking collectives, Fortran 2008 binding …

• MPI-3.1 (2015) minor corrections and features
• MPI-4 (June 2021) several new features

⏤Large count, Persistent collectives, MPI Sessions, Partitioned Communication, MPI_T Events, …

• MPI-4.1 (November 2023) minor corrections and features, latest version of standard
• The Standard itself:

⏤at http://www.mpi-forum.org
⏤All MPI official releases, in both PDF and HTML

6

http://www.mpi-forum.org/

Argonne Leadership Computing Facility7

Important considerations while using MPI
• All parallelism is explicit: the programmer is responsible for correctly identifying parallelism and

implementing parallel algorithms using MPI constructs

7

Argonne Leadership Computing Facility8

Web Pointers
• MPI Standard : http://www.mpi-forum.org/docs/
• MPI Forum : http://www.mpi-forum.org/

• MPI implementations:
⏤MPICH : http://www.mpich.org/
⏤MVAPICH : http://mvapich.cse.ohio-state.edu/
⏤Intel MPI: http://software.intel.com/en-us/intel-mpi-library/
⏤Microsoft MPI: https://docs.microsoft.com/en-us/message-passing-interface/microsoft-mpi
⏤Open MPI : http://www.open-mpi.org/
⏤IBM Spectrum MPI, Cray MPICH, ParaStation MPI, …

• General MPI Education
⏤https://rookiehpc.org/mpi/
⏤https://mpitutorial.com/tutorials/

8

http://www.mpi-forum.org/docs/
http://www.mpi-forum.org/
http://www.mpich.org/
http://mvapich.cse.ohio-state.edu/
http://software.intel.com/en-us/intel-mpi-library/
https://docs.microsoft.com/en-us/message-passing-interface/microsoft-mpi
http://www.open-mpi.org/
https://rookiehpc.org/mpi/
https://mpitutorial.com/tutorials/

Argonne Leadership Computing Facility9

Tutorial Books on MPI

9

Basic MPI Advanced MPI, including MPI-3

Argonne Leadership Computing Facility10

This Tutorial
• Assume familiarity with MPI point-to-point and collective messaging
• Highlight a few important usage issues for performance

⏤Example codes in C

• GPU-aware MPI

• Polaris and Aurora information

Argonne Leadership Computing Facility11

Costs of Unintended Synchronization

11

Argonne Leadership Computing Facility12

Hot Spots
• Simple operations can give surprising performance behavior
• Examples arise even in common grid exchange patterns

• Message passing illustrates problems present even in shared memory
⏤Blocking operations may cause unavoidable stalls

12

Argonne Leadership Computing Facility13

Mesh Exchange
• Exchange data on a mesh

13

0 1

3

2

4 5

6 87

9 10 11

Argonne Leadership Computing Facility14

Example Code

• for (i = 0; i < n_neighbors; i++) {
 MPI_Send(sbuf[i], len, MPI_DOUBLE, nbr[i], tag, comm);
}
for (i = 0; i < n_neighbors; i++) {
 MPI_Recv(rbuf[i], len, MPI_DOUBLE, nbr[i], tag, comm, status);
}

• See unintended-sync/unintended-sync1.c

14

Argonne Leadership Computing Facility15

Deadlocks!
• All of the sends may block, waiting for a matching receive (will for large enough messages)
• The variation of
if (has down nbr) {
 MPI_Send(… down …);
}
if (has up nbr) {
 MPI_Recv(… up …);
}
…
sequentializes (all except the processes on the bottom of the mesh)

• See unintended-sync/unintended-sync2.c

15

Argonne Leadership Computing Facility16

Sequentialization

16

T
i

m
e

Start
Send

Start
Send

Start
Send

Start
Send

Start
Send

Start
Send

Send Recv

Send Recv

Send Recv

Send Recv

Send Recv

Send Recv

Send
Recv

Argonne Leadership Computing Facility17

Fix 1: Use Irecv
• for (i = 0; i < n_neighbors; i++) {
 MPI_Irecv(rbuf[i], len, MPI_DOUBLE, nbr[i], tag, comm, &requests[i]);
}
for (I = 0; I < n_neighbors; i++) {
 MPI_Send(sbuf, len, MPI_DOUBLE, nbr[i], tag, comm);
}
MPI_Waitall(n_neighbors, requests, statuses);

• Does not perform well in practice. Why?

• See unintended-sync/unintended-sync3.c

17

Argonne Leadership Computing Facility18

Timeline

18

0
1

3

2

4
5

6

8
7

9
10
11

send waitall finalizebarrier

Argonne Leadership Computing Facility19

Why?
• Sending is delayed when there is contention at the receiver
• Available bandwidth is being wasted

• Same thing would happen if using memcpy and shared memory

19

Argonne Leadership Computing Facility20

Fix 2: Use Isend and Irecv
for (i = 0; i < n_neighbors; i++) {
 MPI_Irecv(rbuf[i], len, MPI_DOUBLE, nbr[i], tag, comm, &requests[i]);
}
for (i = 0; i < n_neighbors; i++) {
 MPI_Isend(sbuf[i], len, MPI_DOUBLE, nbr[i], tag, comm,
 &requests[n_neighbors+i]);
}
MPI_Waitall(2*n_neighbors, requests, statuses);

• See unintended-sync/unintended-sync4.c

20

Argonne Leadership Computing Facility21

Timeline with Isend-Irecv

21

Note processes 4 and 7 are the only interior processes; these perform more
communication than the other processes. Overall communication time is ~30%

less than previous timeline.

send waitall finalizebarrier

0
1

3

2

4
5

6

8
7

9
10
11

Argonne Leadership Computing Facility22

Lesson: Defer Synchronization
• Send-receive accomplishes two things:

⏤Data transfer
⏤Synchronization

• In many cases, there is more synchronization than required
• Consider the use of nonblocking operations and MPI_WAITALL to defer synchronization

⏤Effectiveness depends on how data is moved by the MPI implementation
⏤E.g., If large messages are moved by blocking RMA operations “under the covers,” the implementation can’t

adapt to contention at the target processes, and you may see no benefit.
⏤This is more likely with larger messages

22

Argonne Leadership Computing Facility23 Argonne Leadership Computing Facility23

Nonblocking vs. Asynchronous

23

Argonne Leadership Computing Facility24

Nonblocking MPI Communication
• Nonblocking communication allows for communication overlap

⏤Overlap with other communication (as seen in previous example)
⏤Overlap with computation

• Overlap with communication
⏤Calling some variant of MPI_TEST or MPI_WAIT will progress outstanding communication
⏤Actual overlap depends on underlying implementation, but in general you will observe better communication

performance when grouping multiple requests together. “Message rate” is a common benchmark.

• Overlap with computation
⏤ If application threads are busy doing computation, communication might not progress in the background. Referred to

as the “weak progress model” in the MPI community.
⏤Communication progress characteristics are dependent on many factors, but not limited to:

§ System architecture
§ MPI library configuration and implementation
§ Runtime parameters
§ Process locality
§ Communication arguments, e.g. datatypes
§ …

Argonne Leadership Computing Facility25

Example Code
• if (rank == 0) {
 MPI_Isend(buf, COUNT, MPI_BYTE, 1, 0, MPI_COMM_WORLD, &req);
 } else if (rank == 1) {
 MPI_Irecv(buf, COUNT, MPI_BYTE, 0, 0, MPI_COMM_WORLD, &req);
 }
 do_work(&req);
 MPI_Wait(&req, MPI_STATUS_IGNORE);

• See progress/async1.c in examples
⏤async1 work is a no-op
⏤async1-s work sleeps for 0.1s
⏤async1-t work sleeps for 0.05s, calls MPI_TEST, sleeps another 0.05s

Argonne Leadership Computing Facility26

Example Code
Single node of Polaris

Two nodes of Polaris

Argonne Leadership Computing Facility27

Lesson: Call MPI to make progress
• Nonblocking != Asynchronous
• Some, but not all communication will progress without user intervention

⏤E.g. rendezvous protocol implemented in software without progress thread(s)

• Break up your computation phases with occasional calls to MPI_TEST to give MPI a chance to drive
communication
⏤Free up internal resources
⏤Advance protocols controlled in user space
⏤There is little penalty for calling MPI_TEST when strong progress is provided by the implementation

27

Argonne Leadership Computing Facility28 Argonne Leadership Computing Facility28

GPU-aware MPI

28

Argonne Leadership Computing Facility29

GPU

Memory

CPU

Memory

Network
Card

GPU

Memory

CPU

Memory

Network
Card

GPU

Memory

CPU

Memory

Network
Card

Programming Model for Accelerators
• GPUs are well suited for fine grain data level parallelism

• Shared Memory, Single Instruction Multiple Data (SIMD)
model

• Many available compute platforms and programming
frameworks (focus on their memory model and interaction
with MPI)
⏤NVIDIA CUDA
⏤AMD ROCm & HIP
⏤OpenMP
⏤OpenACC (mentioned but not covered)
⏤OpenCL & SYCL GPU

Memory

CPU

Memory

Network
Card

MPI*

SIMD

Multi-dimensional Dataset

(*)Single Program Multiple Data

z
y

x

29

Argonne Leadership Computing Facility30

Unified Virtual Addressing (UVA)
• UVA is a memory address management system supported in

modern 64-bit architectures
⏤Requires device driver support

• The same virtual address space is used for all processors,
host or devices

• No distinction between host and device pointers

• The user can query the location of the data allocation given a
pointer in the unified virtual address space and the
appropriate GPU runtime library query APIs (“GPU-aware”
MPI library)

UVA: Single virtual address space
for the host and all devices

GPU

0x000 ..

CPU GPU

 .. 0xFFF

30

Argonne Leadership Computing Facility31

Using MPI with GPU memory

31

GPU

Memory

CPU

Memory

Network
Card

GPU

Memory

CPU

Memory

Network
Card

GPUs have a separate physical memory subsystem
Question: How to move data between GPUs with MPI?

Answer: It depends on what GPU runtime, what hardware and what MPI
implementation you are using

Simple answer: For modern GPUs and GPU-aware MPI implementations, “just
like you would with non-GPU memory”

Argonne Leadership Computing Facility32

Lesson: Let MPI do the work
• There are many mechanisms for moving data efficiently to/from GPU memory
• MPI abstracts away the nitty-gritty details. For example:

⏤GDRCopy for fast access to GPU memory from the CPU (when desirable)
⏤GPUDirectRDMA for communicating GPU data across the network without extra copies to the CPU
⏤GPU inter-process Communication (IPC) for communicating between processes on a node with one or more

GPU devices. Utilize special node-level interconnects like NVLink and XeLink
⏤Each of these complex techniques is employed by modern MPI libraries

• Notes for performance
⏤Device allocations are most common, therefore the most optimized. Shared or managed allocations will also

work, but may not be best.
⏤ If you suspect MPI is not performing to expectations, work with your MPI experts to identify and investigate the

problem

Argonne Leadership Computing Facility33

Unified Virtual Addressing (UVA)
• UVA is a memory address management system supported in

modern 64-bit architectures
⏤Requires device driver support

• The same virtual address space is used for all processors,
host or devices

• No distinction between host and device pointers

• The user can query the location of the data allocation given a
pointer in the unified virtual address space and the
appropriate GPU runtime library query APIs (“GPU-aware”
MPI library) UVA: Single virtual address space

for the host and all devices

GPU

0x000 ..

CPU GPU

 .. 0xFFF

33

Argonne Leadership Computing Facility34

Future directions in MPI + GPU

34

double *dev_buf;
cudaMalloc(&dev_buf, size);

if(my_rank == sender) {
 gpu_kernel<<<grid,block,0,stream0>>>(dev_buf);
 cudaStreamSynchronization(stream0);
 MPI_Isend(dev_buf, size, MPI_DOUBLE, receiver, 0, comm, req);
} else {
 MPI_Recv(dev_buf, size, MPI_DOUBLE, sender, 0, comm, &status);
 gpu_kernel<<<..>>>(dev_buf);
}

• General purpose GPU programming is still evolving

• Synchronization between GPUs and CPUs/NICs is a bottleneck
⏤Pinning memory incurs huge overhead (up to millisecond)
⏤cudaStreamSynchronization et al. are expensive

• Potential solutions
⏤Memory type hints
⏤Stream-aware MPI
⏤ In-kernel triggering

Argonne Leadership Computing Facility35

Polaris
• By default, Cray MPICH is not GPU-aware. Must be explicitly enabled by the user. Why?

⏤GPU-awareness adds overhead. MPI must determine what type of memory a pointer represents.
⏤ In short, CPU-based communication gets better performance by disabling GPU-awareness

• How to enable GPU-aware Cray MPICH
⏤export MPICH_GPU_SUPPORT_ENABLED=1
⏤module load craype-accel-nvidia80
⏤cc –cuda foo.cu –o foo

• Notes on usage
⏤Use the official Cray compiler wrappers cc, CC, ftn. mpicc, mpicxx, mpifort may be present but

WILL NOT WORK for GPU applications.
⏤Cray MPICH is based on the MPICH 3.4.x release series. Supports MPI 3.1 standard.
⏤Be aware of which ranks use which GPUs

§ https://github.com/argonne-lcf/GettingStarted/tree/master/Examples/Polaris/affinity_gpu for scripts to set
GPU affinity for MPI ranks

§ Also try saxpy.cu example on Polaris to practice
⏤Take care to synchronize CUDA stream before passing buffers to MPI

https://github.com/argonne-lcf/GettingStarted/tree/master/Examples/Polaris/affinity_gpu

Argonne Leadership Computing Facility36

Aurora
• Aurora MPICH is GPU-aware by default

⏤ The expectation is that apps running on Aurora use the GPU
⏤Aurora MPICH is purpose built for Aurora. It is a separate distribution from the widely-used Intel MPI.

• How to disable GPU-aware Aurora MPICH
⏤ export MPIR_CVAR_ENABLE_GPU=0

• Notes on usage
⏤Aurora MPICH modules

§ mpich/icc-all-pmix-gpu/20240717
§ mpich/icc-all-debug-pmix-gpu/20240717

⏤Upstream MPICH builds also available, e.g.
§ mpich/dbg/git.063ef64
§ mpich/opt/git.063ef64

⏤Aurora MPICH is based on MPICH 4.2.x series. Supports MPI-4.1 standard.
⏤ mpiexec is Cray PALS, same as Polaris

§ -l option labels stdout/stderr with node,rank information. Useful for debugging.
⏤Be aware of which ranks use which GPUs

§ https://docs.alcf.anl.gov/aurora/running-jobs-aurora/#binding-mpi-ranks-to-gpus

https://docs.alcf.anl.gov/aurora/running-jobs-aurora/

Argonne Leadership Computing Facility37

Questions?

