
Copyright © 2024 SambaNova Systems

May 2024

Models on Datascale

Copyright © 2024 SambaNova Systems

Overview

● SambaFlow Python SDK - user interface to
compile and run their models on a
Datascale System

● Train / Finetune the compiled model on the
RDUs by passing in the PEF file and the
training dataset

● Validate the model or start inference by
passing the checkpoint and testing dataset

● 3 different options of distribution
+ Bare metal - ideal for custom models
+ Model Zoo - ideal for adapting OSS models
+ Model Box - ideal for execution

Copyright © 2024 SambaNova Systems

Bare metal workflow

Host(x86)

SN compiler
packageUser/Custom

Pytorch model
Compiled

model

SN Runtime package

RDU0 RDU7…

Host(x86)

SN Runtime
package

RDU0 RDU7…

Host(x86)

SN Runtime
package

RDU0 RDU7…

Distributed
Training
Launcher .

.
Results

ALCF: Execution phase

ALCF: Compilation phase

Feedback path : precision choice, performance

Feedback path:
Operators support, resources

Copyright © 2024 SambaNova Systems

ModelBox workflow

SN
Compiled

model

Host(x86)

SN Runtime
package

RDU0 RDU7…

Host(x86)

SN Runtime
package

RDU0 RDU7…

Distributed
Training
Launcher .

.
Results

ALCF: Execution phase

SN: Compilation phase

SN
Modelbox

Modelbox: virtualized container with model driver code and compatibility for execution phase

Copyright © 2024 SambaNova Systems

What is a ModelBox

• It is a container image for encapsulating a
common API, model and a version of the
compiler

• It is essentially a microservice to compile & run a
single model on RDU

• Provides a standard set of interfaces to allow
consumption of data and outputs

• The bare metal version of the Runtime is used to
execute the container

• Container images are docker images that are
OCI compliant

5

Container Image

SambaFlow
compiler

gRPC
server(Optional)

YAML config

Model App

Copyright © 2024 SambaNova Systems

Model Zoo Workflow

• The Model Zoo is a library of RDU compatible model source code along with
necessary example runner scripts needed for compiling and running the model on
RDUs.

• The SambaFlow compiler and other software dependencies made available
through a container image

• The Model Zoo is compatible with open source checkpoints (eg: HuggingFace)

• Ideal for further adapting an OSS model that is already ported and released by
Sambanova

Start with a base
architecture

(HF or Pytorch)

Adapt SN model via config
or simple code changes

Run Experiments for
accuracy &

performance

Transfer the model
for deployment

RDU
compatible

model
exists?

Copyright © 2024 SambaNova Systems

Bare metal vs Model Zoo vs Model Box

Model definition(Pytorch)

Modifications

Compiler

Execution

Baremetal

Purpose

Mechanism

End2end
development

Modelzoo

Modify/Develop
existing SN model
implementations

Modelbox

Execute
preverified SN

model
implementations

Example Use Case
Develop custom

model from
scratch, e.g.

CosmicTagger

Alter/Enhance
popular models,

such as llama

Train default model
definition, such as

llama from Hugging
Face

Simplicity, Deployment speed

Capabilities, Customization -+

+-

Copyright © 2024 SambaNova Systems

Porting Models
PyTorch to SambaFlow

Copyright © 2024 SambaNova Systems

How Does It Work?

● Import your model from PyTorch

● Run samba.from_torch_model_(...) to convert model parameters to SambaTensors

+ Convert input Torch Tensors with samba.from_torch_tensor(...)

● Run samba.session.compile(...) to compile the model
+ Sometimes requires adaptations for compatibility (more details coming up)

● Start running via samba.session.run(...) and samba.utils.trace_graph(...)

9

Copyright © 2024 SambaNova Systems

Best Practices, dos and don’ts
• Inputs should be well-defined including internal tensors

+ Need to allow the compiler to see every symbol

• Try to contain operations to 1 continuous graph

• Avoid control flow within model

• Avoid synchronizing between CPU/RDU too often

• Stick with PyTorch, converting models and tensors as needed

Copyright © 2024 SambaNova Systems

What are SambaTensors?

• Wrappers around Torch Tensors, with special SN capabilities
• Each one gets a unique name for interfacing with the chip
• Specify batch_dim for optimization
• Methods to transfer to/from RDU
• Can be treated like normal Torch Tensor

+ e.g., tensor3 = tensor1 + tensor2

or tensor2 = tensor1.reshape(-1, 5)

SambaTensor

.data (torch tensor)

.batch_dim (int)

.dtype (torch dtype)

.sn_name (string)

.sn_grad (gradient on chip)

.cpu() (transfer to CPU)

.rdu() (transfer to RDU)

Copyright © 2024 SambaNova Systems

• Tracing walks through the model with “dummy” tensors to
form the graph

• This is carried out automatically during compilation or it
can be done manually by using trace_graph() before
running on RDU

• Beneficial because the RDU+compiler have knowledge
of the full graph to optimize, not just individual
components

What is tracing?

Add

A B

Linear
W

C

D

Copyright © 2024 SambaNova Systems

How do we trace your graph?

• Model definition is done in PyTorch

• The model’s forward pass will determine the graph
that is generated
+ Note that there is no current support for control flow

within model

• For compiling: samba.session.compile

• For training: samba.utils.trace_graph

Copyright © 2024 SambaNova Systems

Functional Overrides with SambaTensor
SambaTensor: (A, B)

samba.add(A, B)

SambaTensor: C

infer shape/dtype

connect graph: (A, B) -> AddOp -> C

torch.add(A, B)

• SambaFlow understands and supports
similar functional overrides as NumPy and
PyTorch

• If you pass SambaTensors to a Torch
function, SambaFlow will override and
call the equivalent SambaFlow method
+ Check the SambaFlow API docs for a

listing of methods

https://docs.sambanova.ai/api-reference/index.html

Copyright © 2024 SambaNova Systems

Sample Code (Model)

• Model code all in PyTorch

• A few restrictions
+ Modules with parameters are

defined before forward
+ The return type of forward should

be simple (tensor, tuple/list of
tensors)

class ResFFNLogReg(nn.Module):
 """Feed Forward Network with two different activation functions and a residual connection"""
 def __init__(self, num_features: int, hidden_size: int, num_classes: int) -> None:
 super().__init__
 self.gemm1 = nn.Linear(num_features, hidden_size, bias=True)
 self.gemm2 = nn.Linear(hidden_size, hidden_size, bias=True)
 self.gemm3 = nn.Linear(hidden_size, num_classes, bias=True)

 self.norm1 = nn.LayerNorm(hidden_size)
 self.norm2 = nn.LayerNorm(hidden_size)

 self.tanh1 = nn.Tanh()
 self.sigmoid1 = nn.Sigmoid()

 self.criterion = nn.CrossEntropyLoss()

 self.apply(basic_weight_init)

 def forward(self, inputs: torch.Tensor, targets: torch.Tensor) -> Tuple[torch.Tensor]:
 out = self.gemm1(inputs)
 out = self.norm1(out)
 out = self.tanh1(out)
 residual = out
 out = self.gemm2(out)
 out = self.norm2(out)
 out = out + residual
 out = self.sigmoid1(out)
 out = self.gemm3(out)
 loss = self.criterion(out, targets)
 return loss, out

Copyright © 2024 SambaNova Systems

Sample Code (App Code)

• Running is 2 Steps, compile then

run

• Need to pass model, inputs, and

optimizer to compile/trace

• Write your own training loop!

#Input definition: “Dummy” SambaTensors
image = samba.randn(args.batch_size, args.num_features, name='image', batch_dim=0)
label = samba.randint(args.num_classes, (args.batch_size,), name='label', batch_dim=0)
inputs = (image, label)

Model definition
model = ResFFNLogReg(args.num_features, args.hidden_size, args.num_classes)
samba.from_torch_model_(model)

Optimizer definition
optim = sambaflow.samba.optim.SGD(model.parameters(),

 lr=args.lr,
 momentum=args.momentum,

 weight_decay=args.weight_decay)

Compilation & Running, or training, a model must be explicitly carried out
if args.command == "run":
 # Trace the graph
 utils.trace_graph(model, inputs, optim, pef=args.pef, mapping=args.mapping)
 # Within the user defined train function, call: samba.session.run
 train(args, model)
else:
 samba.session.compile(

model=model,
inputs=inputs,
optim=optim,
name=model.__class__.__name__,
init_output_grads=not args.inference,
)

Copyright © 2024 SambaNova Systems

Sample Code
• Run the model with samba.session.run

+ Provide all input_tensors

+ Provide traced output_tensors

• Running specific sections
+ section_ids

+ section_types

• Sync parameter values between

Host/RDU

Running all sections

Sample inference loop

outputs = samba.session.run(input_tensors=inputs,
 output_tensors=traced_outputs,
 section_types= ['fwd', 'bckwd', 'opt'])

Sync the parameter values on rdu back to host
samba.session.to_cpu(model)

Retrieve individual gradients
linear_grad = model.linear1.weight.sn_grad

for inputs in dataloader:
 # Running only fwd here for inference
 loss, out = samba.session.run(input_tensors = inputs,

output_tensors = traced_outputs,
section_types = ['fwd'])

 # Can do anything you like with the outputs
 process_inference_results(loss, out)

Copyright © 2024 SambaNova Systems

Various args and run modes
• Args used internally expressed as command line

args
• Some important args for compile/run:

+ command
+ --inference
+ --batch-size/-b, --microbatch-size/-mb
+ --pef/-p

python <app>.py compile -b=64 -mb=4
--inference -p <app.pef>

args = parse_app_args(argv)
args.command == “compile”
args.batch_size == 64
args.microbatch_size == 4
args.inference == True

An example compile command:
python <app>.py run -b=64 -mb=4
--inference -p <app.pef>

args = parse_app_args(argv)
args.command == “run”
args.batch_size == 64
args.microbatch_size == 4
args.inference == True

An example run command:

Copyright © 2024 SambaNova Systems

Example:

from torch.utils.data import DataLoader
from sambaflow.samba.sambaloader import SambaLoader

data_loader = DataLoader(dataset, batch_size=args.bs,...)
samba_loader = SambaLoader(data_loader, [“sample”, “label”])

for X_val, Y_val in samba_loader:
 samba.session.run(input_tensors=[X_val, Y_val],...)

SambaLoader
● The SambaLoader is wrapper around the PyTorch DataLoader

● It helps to improve overall performance by better parallelizing load ops and graph ops

● As a bonus, it returns an iterator over SambaTensors so you don’t need to explicitly do that
conversion!

Basic Method Structure:

SambaLoader(torch_loader: Iterable[Iterable[torch.Tensor]], names: List[str])

Where torch_loader is an Iterable and names is a list of strings to be given to the input SambaTensors

Copyright © 2024 SambaNova Systems

More Details

● Get more details on Sambanova Public Docs
+ SambaFlow developer documentation

● Examples to try
+ SambaFlow Tutorials

● Contact Sambanova Support team
+ help@sambanova.ai

● Go to the Support Portal
+ support.sambanova.ai

https://docs.sambanova.ai/developer/latest/index.html
https://github.com/sambanova/tutorials
mailto:help@sambanova.ai
http://support.sambanova.ai/

Copyright © 2024 SambaNova Systems

Appendix

Copyright © 2024 SambaNova Systems

What’s inside a model box

• Binary, installed packages of SambaFlow compiler
at a particular release version

• Samba application code for the model and
required libraries or frameworks to compile & run
(e.g. PyTorch)

• A set of gRPC APIs:
+ Compile
+ Train
+ Infer
+ preprocess

• A YAML configuration file that describes a) the
model name, b) named parameters and legal
values.

Container Image

SambaFlow
compiler

gRPC server

YAML config

Model App

The artifacts like PEFs and Checkpoints are pulled from external and mounted on to the container.

Copyright © 2024 SambaNova Systems

Example Models to run on SN30 Datascale

Bare Metal Modelbox

NLP models GPT1.5B,
GPT13B,
BERT

Llama V2 7B, 13B, 70B
Llama V3
Genslm
MIstral
Deepseek Coder
Falcon

Vision models AutodiCNN
CosmicTagger
Unet2D,
Unet 3D,
DeepVIT,
Rescalenet
dcrnn
Vit

AutophaseNN

Science models Uno,
BraggNN
AI4Polymers

-

