
Performance Analysis of GPU-accelerated
Applications with HPCToolkit

John Mellor-Crummey
Rice University
Oct 29-31, 2024

Argonne Leadership Computing Facility2

Outline
• Introduction to HPCToolkit performance tools

⏤Overview of HPCToolkit components and their workflow
⏤HPCToolkit's graphical user interfaces

• Analyzing the performance of GPU-accelerated codes with HPCToolkit
⏤GAMESS (OpenMP)
⏤Quicksilver (CUDA)
⏤PeleC (AMReX)
⏤LAMMPS at Exascale (Kokkos)

• Coming attractions
• Hands-on materials

Argonne Leadership Computing Facility3

Hands-on Materials
• Downloading and installing hpcviewer on your laptop
• Using hpcviewer on polaris
• Collecting performance data with HPCToolkit on turnkey examples
• Troubleshooting measurement and analysis with HPCToolkit

Argonne Leadership Computing Facility4

Linux Foundation’s HPCToolkit Performance Tools
Collect profiles and traces of unmodified parallel CPU and GPU-accelerated applications
Understand where an application spends its time and why

call path profiles associate metrics with application source code contexts
analyze instruction-level performance within GPU kernels and attribute it to your source code

hierarchical traces to understand execution dynamics
Parallel programming models

across nodes: MPI, SHMEM, UPC++, …
within nodes: OpenMP, Kokkos, RAJA, HIP, DPC++, Sycl, CUDA, OpenACC, …

Languages
C, C++, Fortran, Python, …

Hardware
CPU cores and GPUs within a node

CPU: x86_64, Power, ARM
GPU: NVIDIA, AMD, Intel

all of the nodes in Polaris

Argonne Leadership Computing Facility5

Why HPCToolkit?
Measure and analyze performance of CPU and GPU-accelerated applications

• Easy: profile unmodified application binaries
• Fast: low-overhead measurement
• Informative: understand where an application spends its time and why

⏤call path profiles associate metrics with application source code contexts
⏤optional hierarchical traces to understand execution dynamics

• Broad audience
⏤application developers
⏤framework developers
⏤runtime and tool developers

• Unlike vendor tools, works with a wide range of CPUs and GPUs

Argonne Leadership Computing Facility6

How does HPCToolkit Differ from NVIDIA’s Tools?
• NVIDIA NSight Systems

⏤tracing of CPU and GPU streams
⏤analyze traces when you open them with the GUI

▪ long running traces are huge and thus extremely slow to analyze, limiting scalability
⏤designed for measurement and analysis within a node

• NVIDIA NSight Compute
⏤detailed measurement of kernels with counters and execution replay
⏤very slow measurement
⏤flat display of measurements within GPU kernels

• HPCToolkit
⏤supports more scalable tracing than Nsight Systems

▪ measure exascale executions across many GPUs and nodes
⏤scalable, parallel post-mortem analysis vs. non-scalable in-GUI analysis
⏤detailed reconstruction of estimates for calling context profiles within GPU kernels

Argonne Leadership Computing Facility7

HPCToolkit’s Workflow for GPU-accelerated Applications

Argonne Leadership Computing Facility8

HPCToolkit’s Workflow for GPU-accelerated Applications
Step	1:	
• Ensure	that	compilers	record	line	mappings		
• host	compiler:	-g	
• nvcc:	-lineinfo	

Argonne Leadership Computing Facility9

HPCToolkit’s Workflow for GPU-accelerated Applications
Step	2:	
• hpcrun	collects	call	path	profiles	(and	

optionally,	traces)	of	events	of	interest	

Argonne Leadership Computing Facility10

Measurement of CPU and GPU-accelerated Applications
• Sampling using Linux timers and hardware counter overflows on the CPU
• Callbacks when GPU operations are launched and (sometimes) completed
• Event stream for GPU operations
• PC Samples: NVIDIA (in progress: AMD, Intel)
• Binary instrumentation of GPU kernels on Intel GPUs for fine-grain measurement

Argonne Leadership Computing Facility11

Call Stack Unwinding to Attribute Costs in Context

Call path sample

instruction pointer

return address

return address

return address

Calling context tree

• Unwind when timer or hardware counter overflows
⏤measurement overhead proportional to sampling frequency rather than call frequency

• Unwind to capture context for events such as GPU kernel launches

Argonne Leadership Computing Facility12

hpcrun: Measure CPU and/or GPU activity
• GPU profiling

⏤hpcrun -e gpu=xxx <app> ….

• GPU PC sampling (NVIDIA GPU only)
⏤hpcrun -e gpu=nvidia,pc <app>

• CPU and GPU Tracing (in addition to profiling)
⏤hpcrun -e CPUTIME -e gpu=xxx -tt <app>

• Use hpcrun with MPI on Polaris
⏤mpiexec -n <ranks> … hpcrun -e gpu=xxx <app>

 xxx ∈ {nvidia,amd,opencl,level0}

Argonne Leadership Computing Facility13

HPCToolkit’s Workflow for GPU-accelerated Applications
Step	3:	
• hpcstruct	recovers	program	structure	

about	lines,	loops,	and	inlined	functions

Argonne Leadership Computing Facility14

hpcstruct: Analyze CPU and GPU Binaries Using Multiple Threads

• Usage
hpcstruct [--gpucfg yes] <measurement-directory>

• What it does
• Recover program structure information

• Files, functions, inlined templates or functions, loops, source lines
• In parallel, analyze all CPU and GPU binaries that were measured by HPCToolkit

⏤typically analyze large application binaries with 16 threads
⏤typically analyze multiple small application binaries concurrently with 2 threads each

• Cache binary analysis results for reuse when analyzing other executions

NOTE: --gpucfg yes needed only for analysis of GPU binaries for interpreting PC samples on NVIDIA GPUs

Argonne Leadership Computing Facility15

HPCToolkit’s Workflow for GPU-accelerated Applications
Step	4:	
• hpcprof/hpcprof-mpi	combines	

profiles	from	multiple	threads	and	
correlate	metrics	to	static	&	dynamic	
program	structure

Argonne Leadership Computing Facility16

hpcprof/hpcprof-mpi: Associate Measurements with Program Structure

• Analyze data from modest executions with multithreading (moderate scale)
hpcprof <measurement-directory>

• Analyze data from large executions with distributed-memory parallelism + multithreading (large scale)
mpiexec -n ${NODES} --ppn 1 —depth=128 \  
 hpcprof-mpi <measurement-directory>

Argonne Leadership Computing Facility17

HPCToolkit’s Workflow for GPU-accelerated Applications
Step	4:	
• hpcviewer	-	interactively	explore	

profile	and	traces	for	GPU-accelerated	
applications

Argonne Leadership Computing Facility18

Code-centric Analysis with hpcviewer
• Profiling compresses out the temporal dimension

⏤Temporal patterns, e.g. serial sections and dynamic load imbalance are invisible in profiles
• What can we do? Trace call path samples

⏤N times per second, take a call path sample of each thread
⏤Organize the samples for each thread along a time line
⏤View how the execution evolves left to right
⏤What do we view? assign each procedure a color; view a depth slice of an execution

• function calls in full context
• inlined procedures
• inlined templates
• outlined OpenMP loops
• loops

source pane

navigation pane metric pane

view control

metric display

Argonne Leadership Computing Facility19

Understanding Temporal Behavior
• Profiling compresses out the temporal dimension

⏤Temporal patterns, e.g. serial sections and dynamic load imbalance are invisible in profiles
• What can we do? Trace call path samples

⏤N times per second, take a call path sample of each thread
⏤Organize the samples for each thread along a time line
⏤View how the execution evolves left to right
⏤What do we view? assign each procedure a color; view a depth slice of an execution

Time

Processes

Call
stack

Argonne Leadership Computing Facility20

Time-centric Analysis with hpcviewer
M

PI
 ra

nk
s,

O
pe

nM
P

Th
re

ad
s,

 G
PU

 s
tr

ea
m

s

Time

The color at a particular point in a
timeline indicates the CPU procedure
or GPU kernel active at that time at
the selected call stack depth

Depth view showing the history of calling contexts for the thread/GPU stream with the cursor

Call stack pane
shows full calling
context for the
cursor

Minimap indicates part of
execution trace shownA multi-level call stack based view of execution over time

Argonne Leadership Computing Facility21

Enhancements for Exascale
• Measurement

• profile and trace GPU-accelerated applications on AMD, Intel, and NVIDIA GPUs
• Binary analysis

• parallel analysis of CPU and GPU binaries to speed recovery of program structure
• Performance analysis and attribution

• MPI + OpenMP highly parallel analysis of measurement data at exascale
• sparse representations observed to reduce performance analysis results by > 1000x
• detailed attribution of PC samples to rich calling contexts within GPU kernels

• Presentation
• interactive display profiles and terabytes of traces from exascale executions

Argonne Leadership Computing Facility22

hpcstruct Example: Analyze 7.7GB TensorFlow library (170MB text) in 77s

• Example: Analyze 7.7GB shared library _pywrap_tensorflow_internal.so (170MB text) in 77s

Argonne Leadership Computing Facility23

Analyze 38.1GB data for 2K MPI ranks + 2K GPUs using 1K threads in 41s

Slide credit: Jonathon Anderson

Argonne Leadership Computing Facility24

Case Studies
• ExaWind
• GAMESS (OpenMP)
• Quicksilver (CUDA)
• PeleC (AMReX)
• LAMMPS (Kokkos) at exascale

Argonne Leadership Computing Facility25

ExaWind: Wakes from Three Turbines over Time

Figure credit: Jon Rood, NREL

Argonne Leadership Computing Facility26

ExaWind: Visualization of a Wind Farm Simulation

Figure credit: Jon Rood, NREL

Argonne Leadership Computing Facility27

ExaWind: Execution Traces on Frontier Collected with HPCToolkit
Traces on roughly ~70K MPI ranks for ~17minutes

Before: MPI waiting (bad), shown in red After: MPI overhead negligible*

*replaced non-blocking send/recv with ialltoallvFigure credits: Jon Rood, NREL

Argonne Leadership Computing Facility28

ExaWind Testimonials for HPCToolkit
I just wanted to mention we’ve been using HPCToolkit a lot for our ExaWind application on
Frontier, which is a hugely complicated code, and your profiler is one of the only ones we’ve found
that really lets us easily instrument and then browse what our application is doing at runtime
including GPUs. As an example, during a recent hackathon we had, we improved our large scale
performance by 24x by understanding our code better with HPCToolkit and running it on 1000s of
nodes while profiling. We also recently improved upon this by 10% for our total runtime.

- Jon Rood NREL (5/31/2024)

One big thing for us is that we can’t overstate how complicated ExaWind is in general, and how
complicated it is to build, so finding out that HPCToolkit could easily profile our entire application
without a ton of instrumentation during the build process, and be able to profile it on a huge
amount of Frontier with line numbers and visualizing the trace was really amazing to us.

- Jon Rood NREL (6/3/2024)

Argonne Leadership Computing Facility29

Case Study: GAMESS
• General Atomic and Molecular Electronic Structure System (GAMESS)

⏤general ab initio quantum chemistry package
• Calculates the energies, structures, and properties of a wide range of chemical systems

• Experiments
• GPU-accelerated nodes at a prior Perlmutter hackathon

• Single node with 4 GPUs
• Five nodes with 20 GPUs

Perlmutter node at a glance
AMD Milan CPU
4 NVIDIA A100 GPUs
256 GB memory

Argonne Leadership Computing Facility30

Time-centric Analysis: GAMESS 4 ranks, 4 GPUs on Perlmutter

• Profiling compresses out the temporal dimension
⏤Temporal patterns, e.g. serial sections and dynamic load imbalance are invisible in profiles

• What can we do? Trace call path samples
⏤N times per second, take a call path sample of each thread
⏤Organize the samples for each thread along a time line
⏤View how the execution evolves left to right
⏤What do we view? assign each procedure a color; view a depth slice of an execution

GAMESS original All CPU threads and GPU streams

Argonne Leadership Computing Facility31

Time-centric Analysis: GAMESS 4 ranks, 4 GPUs on Perlmutter

• Profiling compresses out the temporal dimension
⏤Temporal patterns, e.g. serial sections and dynamic load imbalance are invisible in profiles

• What can we do? Trace call path samples
⏤N times per second, take a call path sample of each thread
⏤Organize the samples for each thread along a time line
⏤View how the execution evolves left to right
⏤What do we view? assign each procedure a color; view a depth slice of an execution

GAMESS original All CPU threads and GPU streams

Argonne Leadership Computing Facility32

Time-centric Analysis: GAMESS 4 ranks, 4 GPUs on Perlmutter

• Profiling compresses out the temporal dimension
⏤Temporal patterns, e.g. serial sections and dynamic load imbalance are invisible in profiles

• What can we do? Trace call path samples
⏤N times per second, take a call path sample of each thread
⏤Organize the samples for each thread along a time line
⏤View how the execution evolves left to right
⏤What do we view? assign each procedure a color; view a depth slice of an execution

GAMESS original All GPU streams, whole execution

Argonne Leadership Computing Facility33

Time-centric Analysis: GAMESS 4 ranks, 4 GPUs on Perlmutter

• Profiling compresses out the temporal dimension
⏤Temporal patterns, e.g. serial sections and dynamic load imbalance are invisible in profiles

• What can we do? Trace call path samples
⏤N times per second, take a call path sample of each thread
⏤Organize the samples for each thread along a time line
⏤View how the execution evolves left to right
⏤What do we view? assign each procedure a color; view a depth slice of an execution

GAMESS original GPU streams: 1 iteration

GPU load imbalance due to triangular iteration spaces

Argonne Leadership Computing Facility34

Time-centric Analysis: GAMESS 4 ranks, 4 GPUs on Perlmutter

• Profiling compresses out the temporal dimension
⏤Temporal patterns, e.g. serial sections and dynamic load imbalance are invisible in profiles

• What can we do? Trace call path samples
⏤N times per second, take a call path sample of each thread
⏤Organize the samples for each thread along a time line
⏤View how the execution evolves left to right
⏤What do we view? assign each procedure a color; view a depth slice of an execution

GAMESS original

Argonne Leadership Computing Facility35

Time-centric Analysis: GAMESS 5 nodes, 40 ranks, 20 GPUs on Perlmutter

• Profiling compresses out the temporal dimension
⏤Temporal patterns, e.g. serial sections and dynamic load imbalance are invisible in profiles

• What can we do? Trace call path samples
⏤N times per second, take a call path sample of each thread
⏤Organize the samples for each thread along a time line
⏤View how the execution evolves left to right
⏤What do we view? assign each procedure a color; view a depth slice of an execution

GAMESS improved CPU Threads and GPU Streams

Argonne Leadership Computing Facility36

Time-centric Analysis: GAMESS 5 nodes, 40 ranks, 20 GPUs on Perlmutter

• Profiling compresses out the temporal dimension
⏤Temporal patterns, e.g. serial sections and dynamic load imbalance are invisible in profiles

• What can we do? Trace call path samples
⏤N times per second, take a call path sample of each thread
⏤Organize the samples for each thread along a time line
⏤View how the execution evolves left to right
⏤What do we view? assign each procedure a color; view a depth slice of an execution

GAMESS improved

Argonne Leadership Computing Facility37

Time-centric Analysis: GAMESS 5 nodes, 40 ranks, 20 GPUs on Perlmutter

• Profiling compresses out the temporal dimension
⏤Temporal patterns, e.g. serial sections and dynamic load imbalance are invisible in profiles

• What can we do? Trace call path samples
⏤N times per second, take a call path sample of each thread
⏤Organize the samples for each thread along a time line
⏤View how the execution evolves left to right
⏤What do we view? assign each procedure a color; view a depth slice of an execution

GAMESS improved with better manual distribution of work in input

Argonne Leadership Computing Facility38

Time-centric Analysis: GAMESS 5 nodes, 40 ranks, 20 GPUs on Perlmutter

• Profiling compresses out the temporal dimension
⏤Temporal patterns, e.g. serial sections and dynamic load imbalance are invisible in profiles

• What can we do? Trace call path samples
⏤N times per second, take a call path sample of each thread
⏤Organize the samples for each thread along a time line
⏤View how the execution evolves left to right
⏤What do we view? assign each procedure a color; view a depth slice of an execution

GAMESS improved adding Rank 0 Thread 0 to GPU streams

Argonne Leadership Computing Facility39

Time-centric Analysis: GAMESS 5 nodes, 40 ranks, 20 GPUs on Perlmutter

• Profiling compresses out the temporal dimension
⏤Temporal patterns, e.g. serial sections and dynamic load imbalance are invisible in profiles

• What can we do? Trace call path samples
⏤N times per second, take a call path sample of each thread
⏤Organize the samples for each thread along a time line
⏤View how the execution evolves left to right
⏤What do we view? assign each procedure a color; view a depth slice of an execution

1 CPU Stream, 2 GPU Streams: 6 Iterations

Argonne Leadership Computing Facility40

Time-centric Analysis: GAMESS 5 nodes, 40 ranks, 20 GPUs on Perlmutter

• Profiling compresses out the temporal dimension
⏤Temporal patterns, e.g. serial sections and dynamic load imbalance are invisible in profiles

• What can we do? Trace call path samples
⏤N times per second, take a call path sample of each thread
⏤Organize the samples for each thread along a time line
⏤View how the execution evolves left to right
⏤What do we view? assign each procedure a color; view a depth slice of an execution

Argonne Leadership Computing Facility41

Time-centric Analysis: GAMESS 5 nodes, 40 ranks, 20 GPUs on Perlmutter

• Profiling compresses out the temporal dimension
⏤Temporal patterns, e.g. serial sections and dynamic load imbalance are invisible in profiles

• What can we do? Trace call path samples
⏤N times per second, take a call path sample of each thread
⏤Organize the samples for each thread along a time line
⏤View how the execution evolves left to right
⏤What do we view? assign each procedure a color; view a depth slice of an execution

Argonne Leadership Computing Facility42

Time-centric Analysis: GAMESS 5 nodes, 40 ranks, 20 GPUs on Perlmutter

• Profiling compresses out the temporal dimension
⏤Temporal patterns, e.g. serial sections and dynamic load imbalance are invisible in profiles

• What can we do? Trace call path samples
⏤N times per second, take a call path sample of each thread
⏤Organize the samples for each thread along a time line
⏤View how the execution evolves left to right
⏤What do we view? assign each procedure a color; view a depth slice of an execution

Argonne Leadership Computing Facility43

Case Study: Quicksilver
• Proxy application that represents some elements of LLNL’s Mercury workload
• Solves a simplified dynamic Monte Carlo particle transport problem

• Attempts to replicate memory access patterns, communication patterns, and branching or
divergence of Mercury for problems using multigroup cross sections

• Parallelization: MPI, OpenMP, and CUDA
• Performance Issues

• load imbalance (for canned example)
• latency bound table look-ups
• a highly branchy/divergent code path
• poor vectorization potential

Argonne Leadership Computing Facility44

Quicksilver: Detailed analysis within a Kernel using PC Sampling

Argonne Leadership Computing Facility45

Quicksilver: Detailed analysis within a Kernel using PC Sampling

Argonne Leadership Computing Facility46

Analysis of PeleC using PC Sampling on an NVIDIA GPU

9.4% GPU stalls
outside the loop

mostly memory
stalls

Improvement:

pass udata components as scalars
https://github.com/AMReX-Combustion/PelePhysics/pull/192

4% speedup on PeleC PMF drm19 test case

Cause:
passed udata structure pointer to lambda capture

CPU
context

GPU
context

Argonne Leadership Computing Facility47

Key Metrics for GPU Kernels
• GPUOP: GPU operation time (kernel launch, copies, etc.)
• GXCOPY:* GPU copies of various kinds
• GKER: GPU kernel time
• GKER:FGP_ACT: fine grain parallelism actual (active warps per SM)
• GKER:FGP_MAX: maximum possible fine-grain parallelism (max warps per SM)
• GKER:BLK_THR: threads per block
• GKER:BLK_SM: block shared memory
• GKER:OCC_THR: theoretical thread occupancy

Argonne Leadership Computing Facility48

Metrics for GPU Kernels with PC Samples
• GINS: GPU instructions
• GINS:STL_ANY: GPU instruction stalls for any reason
• GINS:STL_IFET: GPU instruction stalls for instruction fetch
• GINS:STL_GMEM: GPU instruction stalls for global memory
• GINS:STL_CMEM: GPU instruction stalls for constant memory
• GINS:STL_IDEP: GPU instruction stalls for instruction dependences
• GINS:STL_PIPE: GPU instruction pipeline stalls
• GINS:STL_MTHR: GPU instruction stalls for memory throttling

• GSAMP:EXP: expected number of samples
• GSAMP:TOT: total number of samples recorded
• GSAMP:UTIL: GPU utilization = (PC samples expected) / (PC samples total)

Argonne Leadership Computing Facility49

LAMMPS on Frontier: Executions with Kernel Duration of Milliseconds

Argonne Leadership Computing Facility50

LAMMPS on Frontier: Executions with Kernel Duration of Milliseconds

Argonne Leadership Computing Facility51

LAMMPS on Frontier: Executions with Kernel Duration of Milliseconds

Argonne Leadership Computing Facility52

LAMMPS on Frontier: Executions with Kernel Duration of Milliseconds

Argonne Leadership Computing Facility53

LAMMPS on Frontier: Executions with Kernel Duration of Milliseconds

Argonne Leadership Computing Facility54

LAMMPS on Frontier: 8K nodes, 64K MPI ranks + 64K GPU tiles

Kernel duration of microseconds

Argonne Leadership Computing Facility55

Coming Attractions
• Integrated support for NVTX/ROCTX/Caliper/Kokkos Labels
• Python-based interface for analysis of performance results
• Support for instruction-level measurement and attribution on AMD and Intel GPUs

Argonne Leadership Computing Facility56

HPCToolkit Resources

• Documentation
⏤User manual

▪ http://hpctoolkit.org/manual/HPCToolkit-users-manual.pdf
⏤Tutorial videos

▪ http://hpctoolkit.org/training.html
▪ recorded demo of GPU analysis of Quicksilver: https://youtu.be/vixa3hGDuGg
▪ recorded tutorial presentation including demo with GPU analysis of GAMESS: https://vimeo.com/781264043

⏤Cheat sheet
▪ https://gitlab.com/hpctoolkit/hpctoolkit/-/wikis/home

• Software
⏤Download hpcviewer GUI binaries for your laptop, desktop, cluster, or supercomputer

▪ OS: Linux, Windows, MacOS
▪ Processors: x86_64, aarch64, ppc64le
▪ http://hpctoolkit.org/download.html

⏤Install HPCToolkit on your Linux desktop, cluster, or supercomputer using Spack
▪ http://hpctoolkit.org/software-instructions.html

http://hpctoolkit.org/manual/HPCToolkit-users-manual.pdf
http://hpctoolkit.org/training.html
https://youtu.be/vixa3hGDuGg
https://vimeo.com/781264043
https://gitlab.com/hpctoolkit/hpctoolkit/-/wikis/home
http://hpctoolkit.org/download.html
http://hpctoolkit.org/software-instructions.html

Argonne Leadership Computing Facility57

Current Funding for HPCToolkit
• Government

⏤Lawrence Livermore National Laboratory Subcontract B665301
⏤DOE Software Tools Ecosystem Project - UT-Battelle Subcontract CW54422
⏤Argonne National Laboratory Subcontract 4F-60094

• Corporate
⏤Advanced Micro Devices
⏤TotalEnergies EP Research & Technology USA, LLC

Argonne Leadership Computing Facility58

Downloading, Installing, and Using
Hpcviewer on Your Laptop

extremecomputingtraining.anl.gov

Hpcviewer Graphical User Interface on Your Laptop

Prepare to explore performance data on your laptop

• Download and install hpcviewer: https://hpctoolkit.org/download.html

Select the right one for your laptop: MacOS (Apple Silicon, Intel), Windows, Linux

• User manual for hpcviewer: https://hpctoolkit.gitlab.io/hpcviewer

https://hpctoolkit.gitlab.io/hpcviewer

extremecomputingtraining.anl.gov

Viewing Performance Data

• Copy a performance database directory to your laptop and open it locally

• Open a performance database on a remote system

Note: using a HPCViewer with a remote system presumes that
hpcserver has already been installed on the remote system

—hpcserver has been installed on Polaris

extremecomputingtraining.anl.gov

Configuring Hpcviewer Remote Access

Run hpcviewer

From the file menu, select “Open remote database”

Fill in the hostname/IP address: polaris.alcf.anl.gov

Fill in your username on Polaris

Fill in the remote installation directory for hpcviewer’s server: /soft/perftools/hpctoolkit/hpcserver

Select the authentication method: “Use password”

Click “OK”

Authenticate using your token as you normally do

Navigate to a database with the file chooser in /soft/perftools/hpctoolkit/examples: quicksilver, lammps

lammps: hpctoolkit-lmp.d hpctoolkit-lmp-pc.d

quicksilver: hpctoolkit-qs.d hpctoolkit-qs-pc.d

http://polaris.alcf.anl.gov

extremecomputingtraining.anl.gov

Opening a Remote Database

extremecomputingtraining.anl.gov

Configuring for use with Polaris

extremecomputingtraining.anl.gov

First View of Polaris: Your Home Directory

extremecomputingtraining.anl.gov

Navigate to Example Databases

extremecomputingtraining.anl.gov

Select a Quicksilver Database with Traces

extremecomputingtraining.anl.gov

After Selecting hpctoolkit-qs.d

extremecomputingtraining.anl.gov

Select the Tab “Trace: qs”

extremecomputingtraining.anl.gov

Use the Filter to “Uncheck all” and Check “GPU” streams

extremecomputingtraining.anl.gov

See Load Imbalance Across the Four GPUs

extremecomputingtraining.anl.gov

The Profile View in the other “PC Sampling” Database

Argonne Leadership Computing Facility72

Using Hpcviewer on Polaris

Argonne Leadership Computing Facility73

Inspecting Precomputed Databases on Polaris
NOTE: Displaying performance results by running hpcviewer directly on Polaris

requires you to be using an X11 desktop

• Load hpctoolkit module to get hpcviewer on your path
module use /soft/perftools/hpctoolkit/modulefiles

module load hpctoolkit

• Use hpcviewer to open example database directories
• Quicksilver

hpcviewer /soft/perftools/hpctoolkit/examples/quicksilver/hpctoolkit-qs.d

hpcviewer /soft/perftools/hpctoolkit/examples/quicksilver/hpctoolkit-qs-pc.d

• LAMMPS
hpcviewer /soft/perftools/hpctoolkit/examples/lammps/hpctoolkit-lmp.d

hpcviewer /soft/perftools/hpctoolkit/examples/lammps/hpctoolkit-lmp-pc.d

extremecomputingtraining.anl.gov

Collecting Performance Data with HPCToolkit:
Turnkey Examples

extremecomputingtraining.anl.gov

Hands-on Tutorial Examples

% git clone https://github.com/hpctoolkit/hpctoolkit-tutorial-examples

% cd hpctoolkit-tutorial-examples/gpu/nvidia

% ls

 arborx.kokkos lammps.kokkos quicksilver.cuda

https://github.com/hpctoolkit/hpctoolkit-tutorial-examples

extremecomputingtraining.anl.gov

A Hands-on Example: Quicksilver

A LLNL proxy application for dynamic Monte Carlo particle transport (MPI + CUDA)

cd hpctoolkit-tutorial-examples/gpu/nvidia/quicksilver.cuda

source setup/polaris.sh

make build

make run

make run-pc

make view

make view-pc

Notes
• Running “make view” or “make view-pc” requires

an X11 desktop to support the GUI
• Alternatively, you can use the hpcviewer’s “open

remote database” capability to view the databases
• hpctoolkit-qs-gpu-cuda.d: profiles + traces
• hpctoolkit-qs-gpu-cuda-pc.d: GPU PC samples

extremecomputingtraining.anl.gov

Analyzing Quicksilver Traces
Using a measurement database with profiles and traces

• Select the Trace tab “Trace: qs”
• Identifying the traces

• Select a pixel on a trace line
• Look at legend on the top of the display, which reports the location of the “cross hair”
• Is this a CPU or GPU trace line?
• Repeat this a few times to identify what each of the trace lines represents

• Notice that each time you select a colored pixel on a trace line, you will be shown the function call
stack in the rightmost pane

• At the top of the pane is a “depth” indicator, that indicates what level in the call stack you are
viewing. The selected level will also be highlighted

• You can change the depth of your view by using the depth up/down, typing a depth, or simply
selecting a frame in the call stack at the desired depth

• You can select above the call stack frame to show the call stacks at the deepest depth
• If a sample doesn’t have an entry at the selected depth, its deepest frame will be shown

extremecomputingtraining.anl.gov

Analyzing Quicksilver Traces

Using a measurement database with profiles and traces
• Zoom in on a region in a trace by selecting it in the trace display

• Use the back button to undo a zoom

• Use the control buttons at the top of the trace pane to
• expand or contract the pane
• move left, right, up, or down

• Keep an eye on the minimap in the lower right corner of the display to know what part of
the trace you are viewing

• Use the home button to reset the trace view to show the whole trace

extremecomputingtraining.anl.gov

Analyzing Quicksilver Traces
Using a measurement database with profiles and traces

• Select the Trace tab “Trace: qs”
• Configure filtering

• Use the Filter menu to select Filter Execution Contexts
• In the filtering menu, select "Uncheck all"
• Now, in the empty box preceded by "Filter:", type "GPU" and then click "Check all”
• Select "OK".
• Now, the Trace View will show only trace lines for the GPUs.

• Inspect the trace data
• Is the work load balanced across the GPUs? How can you tell?
• Bring up the filter menu again. Select "Uncheck all". Type in "RANK 3" in the Filter box. Select thread

0 and the GPU context. Select “OK”.
• Move the call stack to depth 2

• What CPU function is Rank 3 thread 0 executing when the GPU is idle?
• Does this suggest any optimization opportunities?

extremecomputingtraining.anl.gov

Analyzing the Quicksilver Summary Profile

Using a measurement database with profiles and traces

• Select the Profile Tab “Profile: qs”
• Use the column selector to deselect and hide the two REALTIME columns
• Select the GPU OPS column, which represents time spent in all GPU operations
• Select the button to show the “hot path” according to the selected column

• the hot path of parent will continue into a child as long as the child accounts for 50% or
more of the parent’s cost

• The hot path will select “CycleTrackingKernel” — a GPU kernel that consumes 100% of the
GPU cost in this profile

• Use the button to graph “GPU OPS (I)” — inclusive GPU operations across the profiles
• Are the GPU operations balanced or not across the execution contexts (ranks)?

extremecomputingtraining.anl.gov

Analyzing the Quicksilver Summary Profile

• You will notice that for quicksilver, HPCToolkit doesn’t report any data copies between the
host and device

• The quicksilver code uses “unified memory” so that all of the data movement occurs
between CPU and GPU using page faults rather than explicit copies

• Today’s GPU hardware doesn’t support attribution of page faults to individual instructions

• We could profile them, but not attribute them to code

extremecomputingtraining.anl.gov

Analyzing Quicksilver PC Samples

Using a measurement database with traces that was collected *with* PC sampling enabled
Using the default top-down view of the profile

• Select the column “GINS (I)” to focus on the measurement of inclusive GPU Instructions
• Select use the flame button to look at where the instructions are executed
• In the call stack revealed, you will <gpu kernel> placeholder that separates CPU activity (above) from GPU kernel activity

(below)
• Below the <gpu kernel> placeholder you will see the function calls, inlined functions, loops and statements in HPCToolkit’s

reconstruction of calling contexts within the CycleTrackingKernel
• Using the bottom-up view of the profile

• Select the bottom-up tab of above the control pane
• Select the GINS STL_ANY (E) column, which will sort the functions by the exclusive GPU instruction stalls within that function
• Scroll right to see which of the types of contributing types of stalls accounts for most of the STL_ANY amount
• Select the function that has the most exclusive stalls
• Select the the hot path to see where this function is called from.

• Where do the calls to the costly function come from?
• Does there appear to be an opportunity to reduce the number of calls to this function?

extremecomputingtraining.anl.gov

Filtering Tips to Hide Unwanted Implementation Details

• Filter “descendants-only” of CCT nodes with names *MPI* to hide the details of MPI
implementation in profiles and traces

• Filter internal details of RAJA and SYCL templates to suppress unwanted detail using a
“self-only” filter

extremecomputingtraining.anl.gov

A Hands-on Example: ArborX

Performance portable algorithms for geometric search MPI + Kokkos + OpenMP

cd hpctoolkit-tutorial-examples/gpu/nvidia/arborx.kokkos

source setup/polaris.sh

make build

make run

make run-pc

make view

make view-pc

Notes
• Running “make view” or “make view-pc” requires

an X11 desktop to support the GUI
• Alternatively, you can use the hpcviewer’s “open

remote database” capability to view the databases
• hpctoolkit-arborx-md.d: profiles + traces
• hpctoolkit-arborx-md-pc.d: GPU PC samples

extremecomputingtraining.anl.gov

Analyzing ArborX Traces

Using a measurement database with profiles and traces
• Is the GPU active for most of the brief execution or not?
• Zoom in on the pair of trace lines that represents the GPU activity for a rank

• You will see that there are two GPU trace lines per process
• What happens on each?

extremecomputingtraining.anl.gov

A Hands-on Example: LAMMPS

A molecular dynamics code with a focus on materials modeling (Kokkos + MPI)

cd hpctoolkit-tutorial-examples/gpu/nvidia/lammps.kokkos

source setup/polaris.sh

make build

make run

make run-pc

make view

make view-pc

Notes
• Running “make view” or “make view-pc” requires

an X11 desktop to support the GUI
• Alternatively, you can use the hpcviewer’s “open

remote database” capability to view the databases
• hpctoolkit-lmp.d: profiles and traces
• hpctoolkit-lmp-pc.d: GPU PC samples

extremecomputingtraining.anl.gov

Analyzing LAMMPS Profiles, Traces, and PC Samples

HPCToolkit can profile, trace, and collect PC samples for codes regardless of their complexity

Argonne Leadership Computing Facility88

Troubleshooting Measurement and Analysis
with HPCToolkit

Argonne Leadership Computing Facility89

Troubleshooting: Only GPU kernel Name
• Need to measure with PC sampling to measure within GPU kernels

Argonne Leadership Computing Facility90

Troubleshooting: No GPU source code lines with PC sampling

• If you don’t see source code with PC sampling on NVIDIA GPUs: compile with “-lineinfo” option

Argonne Leadership Computing Facility91

Troubleshooting: Compiling ArborX with GPU Line Map Info

• ArborX cmake isn’t set up to include GPU line mappings
• Force the compiler to record GPU line mappings

%cmake -DARBORX_ENABLE_EXAMPLES=true \

 -DCMAKE_INSTALL_PREFIX=`pwd`/../install \

 -DCMAKE_CXX_COMPILER=g++ \

 -DCMAKE_BUILD_TYPE=RelWithDebInfo \

 -DCMAKE_CXX_FLAGS_RELWITHDEBINFO="-O2 -g -DNDEBUG -lineinfo"

