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Outline
• Introduction to HPCToolkit performance tools 

⏤Overview of HPCToolkit components and their workflow 
⏤HPCToolkit's graphical user interfaces  

• Analyzing the performance of GPU-accelerated codes with HPCToolkit 
⏤GAMESS (OpenMP) 
⏤Quicksilver (CUDA) 
⏤PeleC (AMReX) 
⏤LAMMPS at Exascale (Kokkos) 

• Coming attractions 
• Hands-on materials
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Hands-on Materials
• Downloading and installing hpcviewer on your laptop 
• Using hpcviewer on polaris 
• Collecting performance data with HPCToolkit on turnkey examples 
• Troubleshooting measurement and analysis with HPCToolkit



Argonne Leadership Computing Facility4

Linux Foundation’s HPCToolkit Performance Tools
Collect profiles and traces of unmodified parallel CPU and GPU-accelerated applications 
Understand where an application spends its time and why 

call path profiles associate metrics with application source code contexts 
analyze instruction-level performance within GPU kernels and attribute it to your source code 

hierarchical traces to understand execution dynamics 
Parallel programming models 

across nodes: MPI, SHMEM, UPC++, … 
within nodes: OpenMP, Kokkos, RAJA, HIP, DPC++, Sycl, CUDA, OpenACC, … 

Languages 
C, C++, Fortran, Python, … 

Hardware 
CPU cores and GPUs within a node 

CPU: x86_64, Power, ARM 
GPU: NVIDIA, AMD, Intel 

all of the nodes in Polaris
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Why HPCToolkit?
Measure and analyze performance of CPU and GPU-accelerated applications 

• Easy: profile unmodified application binaries 
• Fast: low-overhead measurement 
• Informative: understand where an application spends its time and why 

⏤call path profiles associate metrics with application source code contexts 
⏤optional hierarchical traces to understand execution dynamics 

• Broad audience 
⏤application developers 
⏤framework developers 
⏤runtime and tool developers 

• Unlike vendor tools, works with a wide range of CPUs and GPUs
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How does HPCToolkit Differ from NVIDIA’s Tools?
• NVIDIA NSight Systems 

⏤tracing of CPU and GPU streams 
⏤analyze traces when you open them with the GUI 

▪ long running traces are huge and thus extremely slow to analyze, limiting scalability 
⏤designed for measurement and analysis within a node 

• NVIDIA NSight Compute 
⏤detailed measurement of kernels with counters and execution replay 
⏤very slow measurement 
⏤flat display of measurements within GPU kernels 

• HPCToolkit 
⏤supports more scalable tracing than Nsight Systems  

▪ measure exascale executions across many GPUs and nodes 
⏤scalable, parallel post-mortem analysis vs. non-scalable in-GUI analysis 
⏤detailed reconstruction of estimates for calling context profiles within GPU kernels
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HPCToolkit’s Workflow for GPU-accelerated Applications 
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HPCToolkit’s Workflow for GPU-accelerated Applications 
Step	1:	
• Ensure	that	compilers	record	line	mappings		
• host	compiler:	-g	
• nvcc:	-lineinfo	
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HPCToolkit’s Workflow for GPU-accelerated Applications 
Step	2:	
• hpcrun	collects	call	path	profiles	(and	

optionally,	traces)	of	events	of	interest	
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Measurement of CPU and GPU-accelerated Applications
• Sampling using Linux timers and hardware counter overflows on the CPU 
• Callbacks when GPU operations are launched and (sometimes) completed 
• Event stream for GPU operations 
• PC Samples: NVIDIA (in progress: AMD, Intel) 
• Binary instrumentation of GPU kernels on Intel GPUs for fine-grain measurement
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Call Stack Unwinding to Attribute Costs in Context

Call path sample

instruction pointer

return address

return address

return address

Calling context tree

• Unwind when timer or hardware counter overflows 
⏤measurement overhead proportional to sampling frequency rather than call frequency 

• Unwind to capture context for events such as GPU kernel launches
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hpcrun: Measure CPU and/or GPU activity
• GPU profiling 

⏤hpcrun -e gpu=xxx <app> ….              

• GPU PC sampling (NVIDIA GPU only) 
⏤hpcrun -e gpu=nvidia,pc <app>    

• CPU and GPU Tracing (in addition to profiling) 
⏤hpcrun -e CPUTIME -e gpu=xxx -tt <app>            

• Use hpcrun with MPI on Polaris 
⏤mpiexec -n <ranks> … hpcrun -e gpu=xxx <app>               

 xxx ∈ {nvidia,amd,opencl,level0}
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HPCToolkit’s Workflow for GPU-accelerated Applications 
Step	3:	
• hpcstruct	recovers	program	structure	

about	lines,	loops,	and	inlined	functions
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hpcstruct: Analyze CPU and GPU Binaries Using Multiple Threads

• Usage 
hpcstruct [--gpucfg yes] <measurement-directory>

• What it does 
• Recover program structure information 

• Files, functions, inlined templates or functions, loops, source lines 
• In parallel, analyze all CPU and GPU binaries that were measured by HPCToolkit 

⏤typically analyze large application binaries with 16 threads 
⏤typically analyze multiple small application binaries concurrently with 2 threads each 

• Cache binary analysis results for reuse when analyzing other executions

NOTE: --gpucfg yes needed only for analysis of GPU binaries for interpreting PC samples on NVIDIA GPUs
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HPCToolkit’s Workflow for GPU-accelerated Applications 
Step	4:	
• hpcprof/hpcprof-mpi	combines	

profiles	from	multiple	threads	and	
correlate	metrics	to	static	&	dynamic	
program	structure
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hpcprof/hpcprof-mpi: Associate Measurements with Program Structure

• Analyze data from modest executions with multithreading  (moderate scale) 
hpcprof <measurement-directory>

• Analyze data from large executions with distributed-memory parallelism + multithreading (large scale) 
mpiexec -n ${NODES} --ppn 1 —depth=128 \  
    hpcprof-mpi <measurement-directory>    



Argonne Leadership Computing Facility17

HPCToolkit’s Workflow for GPU-accelerated Applications 
Step	4:	
• hpcviewer	-	interactively	explore	

profile	and	traces	for	GPU-accelerated	
applications
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Code-centric Analysis with hpcviewer
• Profiling compresses out the temporal dimension 

⏤Temporal patterns, e.g. serial sections and dynamic load imbalance are invisible in profiles 
• What can we do? Trace call path samples 

⏤N times per second, take a call path sample of each thread 
⏤Organize the samples for each thread along a time line 
⏤View how the execution evolves left to right 
⏤What do we view? assign each procedure a color; view a depth slice of an execution

• function calls in full context  
• inlined procedures 
• inlined templates 
• outlined OpenMP loops 
• loops

source pane

navigation pane metric pane

view control

metric display
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Understanding Temporal Behavior
• Profiling compresses out the temporal dimension 

⏤Temporal patterns, e.g. serial sections and dynamic load imbalance are invisible in profiles 
• What can we do? Trace call path samples 

⏤N times per second, take a call path sample of each thread 
⏤Organize the samples for each thread along a time line 
⏤View how the execution evolves left to right 
⏤What do we view? assign each procedure a color; view a depth slice of an execution

Time

Processes

Call  
stack
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Time-centric Analysis with hpcviewer
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The color at a particular point in a 
timeline indicates the CPU procedure 
or GPU kernel active at that time at 
the selected call stack depth

Depth view showing the history of calling contexts for the thread/GPU stream with the cursor

Call stack pane 
shows full calling 
context for the 
cursor

Minimap indicates part of 
execution trace shownA multi-level call stack based view of execution over time
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Enhancements for Exascale
• Measurement 

• profile and trace GPU-accelerated applications on AMD, Intel, and NVIDIA GPUs 
• Binary analysis 

• parallel analysis of CPU and GPU binaries to speed recovery of program structure 
• Performance analysis and attribution 

• MPI + OpenMP highly parallel analysis of measurement data at exascale 
• sparse representations observed to reduce performance analysis results by > 1000x 
• detailed attribution of PC samples to rich calling contexts within GPU kernels  

• Presentation 
• interactive display profiles and terabytes of traces from exascale executions
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hpcstruct Example: Analyze 7.7GB TensorFlow library (170MB text) in 77s

• Example: Analyze 7.7GB shared library _pywrap_tensorflow_internal.so (170MB text) in 77s



Argonne Leadership Computing Facility23

Analyze 38.1GB data for 2K MPI ranks + 2K GPUs using 1K threads in 41s

Slide credit: Jonathon Anderson
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Case Studies
• ExaWind 
• GAMESS  (OpenMP) 
• Quicksilver (CUDA) 
• PeleC (AMReX) 
• LAMMPS (Kokkos) at exascale
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ExaWind: Wakes from Three Turbines over Time

Figure credit: Jon Rood, NREL
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ExaWind: Visualization of a Wind Farm Simulation

Figure credit: Jon Rood, NREL
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ExaWind: Execution Traces on Frontier Collected with HPCToolkit
Traces on roughly ~70K MPI ranks for ~17minutes

Before: MPI waiting (bad), shown in red After: MPI overhead negligible*

*replaced non-blocking send/recv with ialltoallvFigure credits: Jon Rood, NREL
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ExaWind Testimonials for HPCToolkit
I just wanted to mention we’ve been using HPCToolkit a lot for our ExaWind application on 
Frontier, which is a hugely complicated code, and your profiler is one of the only ones we’ve found 
that really lets us easily instrument and then browse what our application is doing at runtime 
including GPUs. As an example, during a recent hackathon we had, we improved our large scale 
performance by 24x by understanding our code better with HPCToolkit and running it on 1000s of 
nodes while profiling. We also recently improved upon this by 10% for our total runtime. 

- Jon Rood NREL (5/31/2024)

One big thing for us is that we can’t overstate how complicated ExaWind is in general, and how 
complicated it is to build, so finding out that HPCToolkit could easily profile our entire application 
without a ton of instrumentation during the build process, and be able to profile it on a huge 
amount of Frontier with line numbers and visualizing the trace was really amazing to us.

- Jon Rood NREL (6/3/2024)
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Case Study: GAMESS
• General Atomic and Molecular Electronic Structure System (GAMESS) 

⏤general ab initio quantum chemistry package 
• Calculates the energies, structures, and properties of a wide range of chemical systems 

• Experiments 
• GPU-accelerated nodes at a prior Perlmutter hackathon 

• Single node with 4 GPUs 
• Five nodes with 20 GPUs

Perlmutter node at a glance 
AMD Milan CPU 
4 NVIDIA A100 GPUs 
256 GB memory



Argonne Leadership Computing Facility30

Time-centric Analysis: GAMESS 4 ranks, 4 GPUs on Perlmutter

• Profiling compresses out the temporal dimension 
⏤Temporal patterns, e.g. serial sections and dynamic load imbalance are invisible in profiles 

• What can we do? Trace call path samples 
⏤N times per second, take a call path sample of each thread 
⏤Organize the samples for each thread along a time line 
⏤View how the execution evolves left to right 
⏤What do we view? assign each procedure a color; view a depth slice of an execution

GAMESS original All CPU threads and GPU streams
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Time-centric Analysis: GAMESS 4 ranks, 4 GPUs on Perlmutter

• Profiling compresses out the temporal dimension 
⏤Temporal patterns, e.g. serial sections and dynamic load imbalance are invisible in profiles 

• What can we do? Trace call path samples 
⏤N times per second, take a call path sample of each thread 
⏤Organize the samples for each thread along a time line 
⏤View how the execution evolves left to right 
⏤What do we view? assign each procedure a color; view a depth slice of an execution

GAMESS original All CPU threads and GPU streams
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Time-centric Analysis: GAMESS 4 ranks, 4 GPUs on Perlmutter

• Profiling compresses out the temporal dimension 
⏤Temporal patterns, e.g. serial sections and dynamic load imbalance are invisible in profiles 

• What can we do? Trace call path samples 
⏤N times per second, take a call path sample of each thread 
⏤Organize the samples for each thread along a time line 
⏤View how the execution evolves left to right 
⏤What do we view? assign each procedure a color; view a depth slice of an execution

GAMESS original All GPU streams, whole execution
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Time-centric Analysis: GAMESS 4 ranks, 4 GPUs on Perlmutter

• Profiling compresses out the temporal dimension 
⏤Temporal patterns, e.g. serial sections and dynamic load imbalance are invisible in profiles 

• What can we do? Trace call path samples 
⏤N times per second, take a call path sample of each thread 
⏤Organize the samples for each thread along a time line 
⏤View how the execution evolves left to right 
⏤What do we view? assign each procedure a color; view a depth slice of an execution

GAMESS original GPU streams: 1 iteration

GPU load imbalance due to triangular iteration spaces
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Time-centric Analysis: GAMESS 4 ranks, 4 GPUs on Perlmutter

• Profiling compresses out the temporal dimension 
⏤Temporal patterns, e.g. serial sections and dynamic load imbalance are invisible in profiles 

• What can we do? Trace call path samples 
⏤N times per second, take a call path sample of each thread 
⏤Organize the samples for each thread along a time line 
⏤View how the execution evolves left to right 
⏤What do we view? assign each procedure a color; view a depth slice of an execution

GAMESS original
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Time-centric Analysis: GAMESS 5 nodes, 40 ranks, 20 GPUs on Perlmutter

• Profiling compresses out the temporal dimension 
⏤Temporal patterns, e.g. serial sections and dynamic load imbalance are invisible in profiles 

• What can we do? Trace call path samples 
⏤N times per second, take a call path sample of each thread 
⏤Organize the samples for each thread along a time line 
⏤View how the execution evolves left to right 
⏤What do we view? assign each procedure a color; view a depth slice of an execution

GAMESS improved CPU Threads and GPU Streams
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Time-centric Analysis: GAMESS 5 nodes, 40 ranks, 20 GPUs on Perlmutter

• Profiling compresses out the temporal dimension 
⏤Temporal patterns, e.g. serial sections and dynamic load imbalance are invisible in profiles 

• What can we do? Trace call path samples 
⏤N times per second, take a call path sample of each thread 
⏤Organize the samples for each thread along a time line 
⏤View how the execution evolves left to right 
⏤What do we view? assign each procedure a color; view a depth slice of an execution

GAMESS improved



Argonne Leadership Computing Facility37

Time-centric Analysis: GAMESS 5 nodes, 40 ranks, 20 GPUs on Perlmutter

• Profiling compresses out the temporal dimension 
⏤Temporal patterns, e.g. serial sections and dynamic load imbalance are invisible in profiles 

• What can we do? Trace call path samples 
⏤N times per second, take a call path sample of each thread 
⏤Organize the samples for each thread along a time line 
⏤View how the execution evolves left to right 
⏤What do we view? assign each procedure a color; view a depth slice of an execution

GAMESS improved with better manual distribution of work in input
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Time-centric Analysis: GAMESS 5 nodes, 40 ranks, 20 GPUs on Perlmutter

• Profiling compresses out the temporal dimension 
⏤Temporal patterns, e.g. serial sections and dynamic load imbalance are invisible in profiles 

• What can we do? Trace call path samples 
⏤N times per second, take a call path sample of each thread 
⏤Organize the samples for each thread along a time line 
⏤View how the execution evolves left to right 
⏤What do we view? assign each procedure a color; view a depth slice of an execution

GAMESS improved adding Rank 0 Thread 0 to GPU streams
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Time-centric Analysis: GAMESS 5 nodes, 40 ranks, 20 GPUs on Perlmutter

• Profiling compresses out the temporal dimension 
⏤Temporal patterns, e.g. serial sections and dynamic load imbalance are invisible in profiles 

• What can we do? Trace call path samples 
⏤N times per second, take a call path sample of each thread 
⏤Organize the samples for each thread along a time line 
⏤View how the execution evolves left to right 
⏤What do we view? assign each procedure a color; view a depth slice of an execution

1 CPU Stream, 2 GPU Streams: 6 Iterations
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Time-centric Analysis: GAMESS 5 nodes, 40 ranks, 20 GPUs on Perlmutter

• Profiling compresses out the temporal dimension 
⏤Temporal patterns, e.g. serial sections and dynamic load imbalance are invisible in profiles 

• What can we do? Trace call path samples 
⏤N times per second, take a call path sample of each thread 
⏤Organize the samples for each thread along a time line 
⏤View how the execution evolves left to right 
⏤What do we view? assign each procedure a color; view a depth slice of an execution
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Time-centric Analysis: GAMESS 5 nodes, 40 ranks, 20 GPUs on Perlmutter

• Profiling compresses out the temporal dimension 
⏤Temporal patterns, e.g. serial sections and dynamic load imbalance are invisible in profiles 

• What can we do? Trace call path samples 
⏤N times per second, take a call path sample of each thread 
⏤Organize the samples for each thread along a time line 
⏤View how the execution evolves left to right 
⏤What do we view? assign each procedure a color; view a depth slice of an execution
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Time-centric Analysis: GAMESS 5 nodes, 40 ranks, 20 GPUs on Perlmutter

• Profiling compresses out the temporal dimension 
⏤Temporal patterns, e.g. serial sections and dynamic load imbalance are invisible in profiles 

• What can we do? Trace call path samples 
⏤N times per second, take a call path sample of each thread 
⏤Organize the samples for each thread along a time line 
⏤View how the execution evolves left to right 
⏤What do we view? assign each procedure a color; view a depth slice of an execution
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Case Study: Quicksilver
• Proxy application that represents some elements of LLNL’s Mercury workload  
• Solves a simplified dynamic Monte Carlo particle transport problem 

• Attempts to replicate memory access patterns, communication patterns, and branching or 
divergence of Mercury for problems using multigroup cross sections 

• Parallelization: MPI, OpenMP, and CUDA 
• Performance Issues 

• load imbalance (for canned example) 
• latency bound table look-ups 
• a highly branchy/divergent code path 
• poor vectorization potential
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Quicksilver: Detailed analysis within a Kernel using PC Sampling
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Quicksilver: Detailed analysis within a Kernel using PC Sampling
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Analysis of PeleC using PC Sampling on an NVIDIA GPU

9.4% GPU stalls  
outside the loop

mostly memory 
stalls

Improvement:  

pass udata components as scalars 
https://github.com/AMReX-Combustion/PelePhysics/pull/192 

4% speedup on PeleC PMF drm19 test case 

Cause:  
passed udata structure pointer to lambda capture

CPU 
context

GPU 
context
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Key Metrics for GPU Kernels
• GPUOP: GPU operation time (kernel launch, copies, etc.) 
• GXCOPY:* GPU copies of various kinds 
• GKER: GPU kernel time 
• GKER:FGP_ACT: fine grain parallelism actual (active warps per SM) 
• GKER:FGP_MAX: maximum possible fine-grain parallelism (max warps per SM) 
• GKER:BLK_THR: threads per block 
• GKER:BLK_SM: block shared memory 
• GKER:OCC_THR: theoretical thread occupancy 
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Metrics for GPU Kernels with PC Samples
• GINS: GPU instructions 
• GINS:STL_ANY: GPU instruction stalls for any reason 
• GINS:STL_IFET: GPU instruction stalls for instruction fetch 
• GINS:STL_GMEM: GPU instruction stalls for global memory 
• GINS:STL_CMEM: GPU instruction stalls for constant memory 
• GINS:STL_IDEP: GPU instruction stalls for instruction dependences 
• GINS:STL_PIPE: GPU instruction pipeline stalls 
• GINS:STL_MTHR: GPU instruction stalls for memory throttling 

• GSAMP:EXP: expected number of samples 
• GSAMP:TOT: total number of samples recorded 
• GSAMP:UTIL: GPU utilization = (PC samples expected) / (PC samples total)
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LAMMPS on Frontier: Executions with Kernel Duration of Milliseconds



Argonne Leadership Computing Facility50

LAMMPS on Frontier: Executions with Kernel Duration of Milliseconds
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LAMMPS on Frontier: Executions with Kernel Duration of Milliseconds
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LAMMPS on Frontier: Executions with Kernel Duration of Milliseconds
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LAMMPS on Frontier: Executions with Kernel Duration of Milliseconds
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LAMMPS on Frontier: 8K nodes, 64K MPI ranks + 64K GPU tiles

Kernel duration of microseconds
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Coming Attractions
• Integrated support for NVTX/ROCTX/Caliper/Kokkos Labels 
• Python-based interface for analysis of performance results 
• Support for instruction-level measurement and attribution on AMD and Intel GPUs
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HPCToolkit Resources

• Documentation 
⏤User manual 

▪ http://hpctoolkit.org/manual/HPCToolkit-users-manual.pdf  
⏤Tutorial videos 

▪ http://hpctoolkit.org/training.html    
▪ recorded demo of GPU analysis of Quicksilver: https://youtu.be/vixa3hGDuGg  
▪ recorded tutorial presentation including demo with GPU analysis of GAMESS: https://vimeo.com/781264043 

⏤Cheat sheet 
▪ https://gitlab.com/hpctoolkit/hpctoolkit/-/wikis/home  

• Software 
⏤Download hpcviewer GUI binaries for your laptop, desktop, cluster, or supercomputer 

▪ OS: Linux, Windows, MacOS 
▪ Processors: x86_64, aarch64, ppc64le 
▪ http://hpctoolkit.org/download.html 

⏤Install HPCToolkit on your Linux desktop, cluster, or supercomputer using Spack 
▪ http://hpctoolkit.org/software-instructions.html

http://hpctoolkit.org/manual/HPCToolkit-users-manual.pdf
http://hpctoolkit.org/training.html
https://youtu.be/vixa3hGDuGg
https://vimeo.com/781264043
https://gitlab.com/hpctoolkit/hpctoolkit/-/wikis/home
http://hpctoolkit.org/download.html
http://hpctoolkit.org/software-instructions.html
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Current Funding for HPCToolkit
• Government 

⏤Lawrence Livermore National Laboratory Subcontract B665301 
⏤DOE Software Tools Ecosystem Project - UT-Battelle Subcontract CW54422  
⏤Argonne National Laboratory Subcontract 4F-60094 

• Corporate 
⏤Advanced Micro Devices 
⏤TotalEnergies EP Research & Technology USA, LLC
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Downloading, Installing, and Using  
Hpcviewer on Your Laptop
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Hpcviewer Graphical User Interface on Your Laptop

Prepare to explore performance data on your laptop 

• Download and install hpcviewer: https://hpctoolkit.org/download.html

Select the right one for your laptop: MacOS (Apple Silicon, Intel), Windows, Linux 

• User manual for hpcviewer: https://hpctoolkit.gitlab.io/hpcviewer

https://hpctoolkit.gitlab.io/hpcviewer
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Viewing Performance Data

• Copy a performance database directory to your laptop and open it locally

• Open a performance database on a remote system

Note: using a HPCViewer with a remote system presumes that 
hpcserver has already been installed on the remote system 

—hpcserver has been installed on Polaris
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Configuring Hpcviewer Remote Access

Run hpcviewer 

From the file menu, select “Open remote database” 

Fill in the hostname/IP address: polaris.alcf.anl.gov

Fill in your username on Polaris 

Fill in the remote installation directory for hpcviewer’s server: /soft/perftools/hpctoolkit/hpcserver 

Select the authentication method: “Use password” 

Click “OK” 

Authenticate using your token as you normally do 

Navigate to a database with the file chooser in /soft/perftools/hpctoolkit/examples: quicksilver, lammps 

lammps: hpctoolkit-lmp.d  hpctoolkit-lmp-pc.d 

quicksilver: hpctoolkit-qs.d  hpctoolkit-qs-pc.d

http://polaris.alcf.anl.gov
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Opening a Remote Database
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Configuring for use with Polaris



extremecomputingtraining.anl.gov

First View of Polaris: Your Home Directory
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Navigate to Example Databases 
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Select a Quicksilver Database with Traces
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After Selecting hpctoolkit-qs.d
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Select the Tab “Trace: qs”



extremecomputingtraining.anl.gov

Use the Filter to “Uncheck all” and Check “GPU” streams
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See Load Imbalance Across the Four GPUs
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The Profile View in the other “PC Sampling” Database
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Using Hpcviewer on Polaris
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Inspecting Precomputed Databases on Polaris
NOTE: Displaying performance results by running hpcviewer directly on Polaris 

requires you to be using an X11 desktop 

• Load hpctoolkit module to get hpcviewer on your path 
module use /soft/perftools/hpctoolkit/modulefiles

module load hpctoolkit

• Use hpcviewer to open example database directories 
• Quicksilver 

hpcviewer /soft/perftools/hpctoolkit/examples/quicksilver/hpctoolkit-qs.d

hpcviewer /soft/perftools/hpctoolkit/examples/quicksilver/hpctoolkit-qs-pc.d

• LAMMPS 
hpcviewer /soft/perftools/hpctoolkit/examples/lammps/hpctoolkit-lmp.d

hpcviewer /soft/perftools/hpctoolkit/examples/lammps/hpctoolkit-lmp-pc.d
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Collecting Performance Data with HPCToolkit: 
Turnkey Examples
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Hands-on Tutorial Examples

% git clone https://github.com/hpctoolkit/hpctoolkit-tutorial-examples

% cd hpctoolkit-tutorial-examples/gpu/nvidia

% ls

   arborx.kokkos   lammps.kokkos   quicksilver.cuda

https://github.com/hpctoolkit/hpctoolkit-tutorial-examples
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A Hands-on Example: Quicksilver

A  LLNL proxy application for dynamic Monte Carlo particle transport (MPI + CUDA) 

cd hpctoolkit-tutorial-examples/gpu/nvidia/quicksilver.cuda

source setup/polaris.sh

make build

make run

make run-pc

make view

make view-pc

Notes 
• Running “make view” or “make view-pc” requires 

an X11 desktop to support the GUI 
• Alternatively, you can use the hpcviewer’s “open 

remote database” capability to view the databases 
• hpctoolkit-qs-gpu-cuda.d: profiles + traces 
• hpctoolkit-qs-gpu-cuda-pc.d: GPU PC samples
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Analyzing Quicksilver Traces
Using a measurement database with profiles and traces 

• Select the Trace tab “Trace: qs” 
• Identifying the traces 

• Select a pixel on a trace line 
• Look at legend on the top of the display, which reports the location of the “cross hair” 
• Is this a CPU or GPU trace line? 
• Repeat this a few times to identify what each of the trace lines represents 

• Notice that each time you select a colored pixel on a trace line, you will be shown the function call 
stack in the rightmost pane 

• At the top of the pane is a “depth” indicator, that indicates what level in the call stack you are 
viewing. The selected level will also be highlighted 

• You can change the depth of your view by using the depth up/down, typing a depth, or simply 
selecting a frame in the call stack at the desired depth 

• You can select  above the call stack frame to show the call stacks at the deepest depth 
• If a sample doesn’t have an entry at the selected depth, its deepest frame will be shown
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Analyzing Quicksilver Traces

Using a measurement database with profiles and traces 
• Zoom in on a region in a trace by selecting it in the trace display 

• Use the back button  to undo a zoom 

• Use the control buttons at the top of the trace pane to  
• expand or contract the pane 
• move left, right, up, or down 

• Keep an eye on the minimap in the lower right corner of the display to know what part of 
the trace you are viewing 

• Use the home button to reset the trace view to show the whole trace 
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Analyzing Quicksilver Traces
Using a measurement database with profiles and traces 

• Select the Trace tab “Trace: qs” 
• Configure filtering 

• Use the Filter menu to select Filter Execution Contexts 
• In the  filtering menu, select "Uncheck all" 
• Now, in the empty box preceded by "Filter:", type "GPU" and then click "Check all” 
• Select "OK".  
• Now, the Trace View will show only trace lines for the GPUs.  

• Inspect the trace data 
• Is the work load balanced across the GPUs? How can you tell? 
• Bring up the filter menu again. Select "Uncheck all". Type in "RANK 3" in the Filter box. Select thread 

0 and the GPU context. Select “OK”. 
• Move the call stack to depth 2 

• What CPU function is Rank 3 thread 0 executing when the GPU is idle? 
• Does this suggest any optimization opportunities? 
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Analyzing the Quicksilver Summary Profile

Using a measurement database with profiles and traces 

• Select the Profile Tab “Profile: qs” 
• Use the column selector   to deselect and hide the two REALTIME columns 
• Select the GPU OPS column, which represents time spent in all GPU operations 
• Select the  button to show the “hot path” according to the selected column 

• the hot path of parent will continue into a child as long as the child accounts for 50% or 
more of the parent’s cost 

• The hot path will select “CycleTrackingKernel” — a GPU kernel that consumes 100% of the 
GPU cost in this profile 

• Use the  button to graph “GPU OPS (I)” — inclusive GPU operations across the profiles 
• Are the GPU operations balanced or not across the execution contexts (ranks)?
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Analyzing the Quicksilver Summary Profile

• You will notice that for quicksilver, HPCToolkit doesn’t report any data copies between the 
host and device 

• The quicksilver code uses “unified memory” so that all of the data movement occurs 
between CPU and GPU using page faults rather than explicit copies 

• Today’s GPU hardware doesn’t support attribution of page faults to individual instructions 

• We could profile them, but not attribute them to code
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Analyzing Quicksilver PC Samples

Using a measurement database with traces that was collected *with* PC sampling enabled 
Using the default top-down view of the profile 

• Select the column “GINS (I)” to focus on the measurement of inclusive GPU Instructions 
• Select use the flame button to look at where the instructions are executed 
• In the call stack revealed, you will  <gpu kernel> placeholder that separates CPU activity (above) from GPU kernel activity 

(below) 
• Below the <gpu kernel> placeholder you will see the function calls, inlined functions, loops and statements in HPCToolkit’s 

reconstruction of calling contexts within the CycleTrackingKernel  
• Using the bottom-up view of the profile 

• Select the bottom-up tab of above the control pane 
• Select the GINS STL_ANY (E) column, which will sort the functions by the exclusive GPU instruction stalls within that function 
• Scroll right to see which of the types of contributing types of stalls accounts for most of the STL_ANY amount 
• Select the function that has the most exclusive stalls 
• Select the the hot path to see where this function is called from. 

• Where do the calls to the costly function come from? 
• Does there appear to be an opportunity to reduce the number of calls to this function?
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Filtering Tips to Hide Unwanted Implementation Details

• Filter “descendants-only” of CCT nodes with names *MPI* to hide the details of MPI 
implementation in profiles and traces 

• Filter internal details of RAJA and SYCL templates to suppress unwanted detail using a 
“self-only” filter
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A Hands-on Example: ArborX

Performance portable algorithms for geometric search MPI + Kokkos + OpenMP 

cd hpctoolkit-tutorial-examples/gpu/nvidia/arborx.kokkos

source setup/polaris.sh

make build

make run

make run-pc

make view

make view-pc

Notes 
• Running “make view” or “make view-pc” requires 

an X11 desktop to support the GUI 
• Alternatively, you can use the hpcviewer’s “open 

remote database” capability to view the databases 
• hpctoolkit-arborx-md.d: profiles + traces 
• hpctoolkit-arborx-md-pc.d: GPU PC samples
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Analyzing ArborX Traces

Using a measurement database with profiles and traces 
• Is the GPU active for most of the brief execution or not? 
• Zoom in on the pair of trace lines that represents the GPU activity for a rank 

• You will see that there are two GPU trace lines per process 
• What happens on each?
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A Hands-on Example: LAMMPS

A molecular dynamics code with a focus on materials modeling (Kokkos + MPI) 

cd hpctoolkit-tutorial-examples/gpu/nvidia/lammps.kokkos

source setup/polaris.sh

make build

make run

make run-pc

make view

make view-pc

Notes 
• Running “make view” or “make view-pc” requires 

an X11 desktop to support the GUI 
• Alternatively, you can use the hpcviewer’s “open 

remote database” capability to view the databases 
• hpctoolkit-lmp.d: profiles and traces 
• hpctoolkit-lmp-pc.d: GPU PC samples
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Analyzing LAMMPS Profiles, Traces, and PC Samples

HPCToolkit can profile, trace, and collect PC samples for codes regardless of their complexity
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Troubleshooting Measurement and Analysis 
with HPCToolkit
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Troubleshooting: Only GPU kernel Name
• Need to measure with PC sampling to measure within GPU kernels
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Troubleshooting: No GPU source code lines with PC sampling

• If you don’t see source code with PC sampling on NVIDIA GPUs: compile with “-lineinfo” option
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Troubleshooting: Compiling ArborX with GPU Line Map Info

• ArborX cmake isn’t set up to include GPU line mappings  
• Force the compiler to record GPU line mappings 

%cmake  -DARBORX_ENABLE_EXAMPLES=true \

        -DCMAKE_INSTALL_PREFIX=`pwd`/../install \

        -DCMAKE_CXX_COMPILER=g++ \

        -DCMAKE_BUILD_TYPE=RelWithDebInfo \

        -DCMAKE_CXX_FLAGS_RELWITHDEBINFO="-O2 -g -DNDEBUG -lineinfo"


