October 29-31, 2024 # ALCF Hands-on HPC Workshop # Deep Learning Frameworks Väinö Hatanpää Argonne Leadership Computing Facility Argonne National Laboratory October 29, 2024 #### **Outline** - 1. A quick intro to deep learning frameworks: PyTorch, TensorFlow, and Jax - 2. Intel developer cloud demo - 3. Usage on ALCF systems demo - 4. Extending python environments - 5. Performance considerations, mixed precision - 6. Intro to distributed training #### **Frameworks** Provide various essential features for deep learning: - Automatic differentiation - GPU offloading and acceleration from python - Various efficient implementations included, some JIT compiled - Essential building blocks for ML operations - Communication and distributed training libraries integrated to scale out to multiple GPUs/nodes - NCCL (Nvidia), oneCCL (Intel), RCCL (AMD) - Horovod (TF, PyTorch) - DeepSpeed # **PyTorch** - Based on Torch (2002-2017), a machine learning library based on Lua and C/C++ - In 2017 the development moved to PyTorch, a Python port of the library - Originally developed by Meta. Since 2023 PyTorch is governed by PyTorch foundation, subsidiary of Linux Foundation - "NumPy-like" pythonic design - Dynamic graphs, easy for research and prototyping - But still achieves good performance - "Compile" support since 2.0 - Compiling the dynamic grap into an efficient one - We are interested in how this works for your model - 2.0 backward compatible with 1.0 and introduces minimal breaking changes (Unlike - Easy to integrate C++ extensions and custom kernels - implemented with pybind11 #### **TensorFlow** - Released in 2015, developed by Google - Significant changes from v1 to v2 (2019). Only v2 supported at ALCF - Keras integration - Also in PyTorch but more commonly used with TF - Provides higher level API, potentially making usage even easier - TF has static graphs. Good for production use. - XLA compilation support - Compiles TensorFlow graphs into efficient machine code - Potentially harder to debug and profile due to renamed kernels <u> https://www.tensorflow.org/guide/intro_to_modules</u> #### **JAX** - Relatively new framework from Google - Approach driven by purely functional transformations - Some gotchas https://jax.readthedocs.io/en/latest/notebooks/Common Gotcha s in JAX.html - JIT compilation with OpenXLA - Due to the functional approach, this is just transforming the computational sequence into primitive operations - By design supports various hardware platforms due to the compilation to an intermediate representation - Automatic vectorization of functions - vmap: https://jax.readthedocs.io/en/latest/automatic-vectorization.html - pmap for multi-process computations https://jax.readthedocs.io/en/latest/multi_process.html #### Demo to the intel dev cloud instance - https://console.cloud.intel.com/docs/guides/get_started.html#launch-instance - Launch and log in to the console: https://console.cloud.intel.com/ - Learning -> AI with Max Series GPU -> PyTorch on Intel® GPUs -> launch - The notebook will walk through all the necessary steps to train a model with Intel GPUs - It is possible to start another notebook from scratch, use the PyTorch 2.5 kernel (as of 10/2024) #### Frameworks at ALCF Reminder: On the ALCF systems you log in into a some kind of a login/entry node and you need to navigate to a compute node to have GPUs!! - Via the batch job system on Polaris/Aurora/Sunspot (and most if not all others) - https://docs.alcf.anl.gov/running-jobs/job-and-queuescheduling/ - Sometimes a GPU is a requirement to build certain packages Login to a login node ssh polaris.alcf.anl.gov <user>@polaris-login-04 Submit a request for resources qsub -I -q HandsOnHPC -t 60 -n 1 -A alcf_training Find yourself on a compute Node significant potential for speedup with negligible loss of predictive performance - FP16 might not have enough range for loss/gradients - requires loss scaling - Iargely superseded by BF16 in deep learning applications as BF16 does not require loss scaling - Pure FP16/BF16 rarely used in practice as certain operations require still better to be stored in FP32 - Mixed precision required - Gradient accumulation - Holding a set of master weights | | Specifications | | |------------------------|--------------------------|------------| | | A100 80GB PCle | Alc | | FP64 | 9.7 TFLOPS | | | FP64 Tensor Core | 19.5 TFLOPS | | | FP32 | 19.5 TFLOPS | | | Tensor Float 32 (TF32) | 156 TFLOPS 312 TFLOPS* | | | BFLOAT16 Tensor Core | 312 TFLOPS 624 TFLOPS* | | | FP16 Tensor Core | 312 TFLOPS 624 TFLOPS* | | | INT8 Tensor Core | 624 TOPS | 1248 TOPS* | https://www.nvidia.com/en-us/data-center/a100/ https://blogs.nvidia.com/blog/tensorfloat-32-precision-format/ # Mixed precision - PyTorch, TensorFlow can take care of things automatically: - PT: https://pytorch.org/tutorials/recipes/recipes/amp_recipe.html with torch.autocast(device_type=device, dtype=torch.float16) - TF: https://www.tensorflow.org/guide/mixed_precision from tensorflow.keras import mixed_precision_ policy = mixed_precision.Policy('mixed_float16') mixed_precision.set_global_policy(policy) - Frameworks like Megatron-DeepSpeed - Adjust Deepspeed config.json - https://www.deepspeed.ai/docs/config-json/ - Enable in Megatron with --bf16 flag | | Specifications | | |------------------------|--------------------------|------------| | | A100 80GB PCle | Alc | | FP64 | 9.7 TFLOPS | | | FP64 Tensor Core | 19.5 TFLOPS | | | FP32 | 19.5 TFLOPS | | | Tensor Float 32 (TF32) | 156 TFLOPS 312 TFLOPS* | | | BFLOAT16 Tensor Core | 312 TFLOPS 624 TFLOPS* | | | FP16 Tensor Core | 312 TFLOPS 624 TFLOPS* | | | INT8 Tensor Core | 624 TOPS | 1248 TOPS* | https://www.nvidia.com/en-us/data-center/a100/ https://blogs.nvidia.com/blog/tensorfloat-32-precision-format/ # Quick intro to distributed training - More GPU == more better? - Yes, but splitting a problem across multiple devices can require additional attention - The communication groups and such need to be prepared appropriately - Data Parallelism - Having multiple copies of the same model operate on different data samples - Only communication strictly required is synchronizing the gradient updates before applying them - Model parallelism - Splitting up a single model instance across multiple devices - Tensor parallelism, Pipeline parallelism etc. - Details not covered in this talk - When doing parallelism, your batch size grows with more GPUs - global_batch_size=micro_batch_size * gradient_accumulation_steps*data_parallel_degree/model_parallel_degree - "GBS=MBS*GAS*DP/MP" - For example, 2 nodes of 4 GPUs, a microbatch of 2 with gradient accumulation of 2, no model parallelism: GBS of 16==2*4*2*2 - Running at scale, you might also need to care about various things such as I/O, discussed in separate sessions #### Data parallel #### Tensor parallel #### Pipeline parallel # Distributed setup at ALCF - Setting up the communication world and ranks is required - MPI is a good backed for discovery (on the right). - You could also script your own approach based on hostfiles generated by the scheduler - In the script or in the code define the main process hostname and communication port. For example these env variables are automatically accessed by torch distributed initialization: ``` export MASTER_ADDR=$(hostname) export MASTER_PORT=29401 ``` - You could also use MPI and sockets library to figure the master address and port and broadcast them - In the code, set the device and initialize torch distributed. - alternative is to use torchrun: https://pytorch.org/docs/stable/elastic/run.html (Also needs some information like above) ``` from mpi4py import MPI rank = int(MPI.COMM WORLD.Get rank()) world_size = int(MPI.COMM_WORLD.Get_size()) device count = torch.cuda.device count() local_rank = rank % device_count torch.cuda.set_device(local_rank) torch.distributed.init process group(backend="nccl", world size=world size, rank=rank, ``` #### For more information - ALCF docs: https://docs.alcf.anl.gov/ - Documentation for various frameworks - support@alcf.anl.gov - Ask at the workshop