


Deep Learning Frameworks
Väinö Hatanpää

Argonne Leadership Computing Facility
Argonne National Laboratory
October 29, 2024



Argonne Leadership Computing Facility3

Outline

1. A quick intro to deep learning frameworks: PyTorch, TensorFlow, and Jax

2. Intel developer cloud demo

3. Usage on ALCF systems demo

4. Extending python environments

5. Performance considerations, mixed precision

6. Intro to distributed training



Argonne Leadership Computing Facility4

Frameworks

Provide various essential features for deep learning:

• Automatic differentiation

• GPU offloading and acceleration from python

⏤ Various efficient implementations included, some JIT 
compiled

• Essential building blocks for ML operations

• Communication and distributed training libraries 
integrated to scale out to multiple GPUs/nodes

⏤ NCCL (Nvidia), oneCCL (Intel), RCCL (AMD)

⏤ Horovod (TF, PyTorch)

⏤ DeepSpeed



Argonne Leadership Computing Facility5

PyTorch

• Based on Torch (2002-2017), a machine learning 
library based on Lua and C/C++

• In 2017 the development moved to PyTorch, a 
Python port of the library

• Originally developed by Meta. Since 2023 PyTorch
is governed by PyTorch foundation, subsidiary of 
Linux Foundation

• “NumPy-like” pythonic design

• Dynamic graphs, easy for research and 
prototyping

⏤ But still achieves good performance

• “Compile” support since 2.0
⏤ Compiling the dynamic grap into an efficient one

⏤ We are interested in how this works for your model

⏤ 2.0 backward compatible with 1.0 and introduces minimal breaking changes (Unlike 
TensorFlow)

• Easy to integrate C++ extensions and custom 
kernels 

⏤ implemented with pybind11

⏤ https://pytorch.org/tutorials/advanced/cpp_extension.html

https://www.linuxfoundation.org/blog/pytorch-foundation-the-first-six-months

https://pytorch.org/tutorials/advanced/cpp_extension.html
https://www.linuxfoundation.org/blog/pytorch-foundation-the-first-six-months


Argonne Leadership Computing Facility6

TensorFlow

• Released in 2015, developed by Google 

• Significant changes from v1 to v2 (2019). Only 
v2 supported at ALCF

• Keras integration

⏤ Also in PyTorch but more commonly used with 
TF

⏤ Provides higher level API, potentially making 
usage even easier

• TF has static graphs. Good for production 
use. 

• XLA compilation support

⏤ Compiles TensorFlow graphs into efficient 
machine code

⏤ Potentially harder to debug and profile due to 
renamed kernels https://www.tensorflow.org/guide/intro_to_modules

https://www.tensorflow.org/guide/intro_to_modules


Argonne Leadership Computing Facility7

JAX

• Relatively new framework from Google

• Approach driven by purely functional transformations

⏤ Some gotchas 
https://jax.readthedocs.io/en/latest/notebooks/Common_Gotcha
s_in_JAX.html

• JIT compilation with OpenXLA

⏤ Due to the functional approach, this is just transforming the 
computational sequence into primitive operations

⏤ By design supports various hardware platforms due to the 
compilation to an intermediate representation

• Automatic vectorization of functions

⏤ vmap: https://jax.readthedocs.io/en/latest/automatic-
vectorization.html

⏤ pmap for multi-process computations 
https://jax.readthedocs.io/en/latest/multi_process.html CUDA x86 ARM

https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html
https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html
https://jax.readthedocs.io/en/latest/automatic-vectorization.html
https://jax.readthedocs.io/en/latest/automatic-vectorization.html
https://jax.readthedocs.io/en/latest/multi_process.html


Argonne Leadership Computing Facility8

Demo to the intel dev cloud instance

• https://console.cloud.intel.com/docs/guides/get_started.html#launch-instance

• Launch and log in to the console: https://console.cloud.intel.com/

• Learning -> AI with Max Series GPU -> PyTorch on Intel® GPUs -> launch

• The notebook will walk through all the necessary steps to train a model with Intel GPUs

• It is possible to start another notebook from scratch, use the PyTorch 2.5 kernel (as of 10/2024)

https://console.cloud.intel.com/docs/guides/get_started.html
https://console.cloud.intel.com/


Argonne Leadership Computing Facility9

Frameworks at ALCF

Reminder: On the ALCF systems you log in into a some 
kind of a login/entry node and you need to navigate to a 
compute node to have GPUs!!

• Via the batch job system on Polaris/Aurora/Sunspot 
(and most if not all others)

• https://docs.alcf.anl.gov/running-jobs/job-and-queue-
scheduling/

• Sometimes a GPU is a requirement to build certain 
packages

Login to a login node

Submit a request for resources

<user>@polaris-login-04

qsub -I -q HandsOnHPC -t 60 -n 1 -A alcf_training

Run your workload

mpiexec … python run.py

Find yourself on a compute Node

<user>@node

ssh polaris.alcf.anl.gov

Wait

https://docs.alcf.anl.gov/running-jobs/job-and-queue-scheduling/
https://docs.alcf.anl.gov/running-jobs/job-and-queue-scheduling/


Argonne Leadership Computing Facility10

Frameworks at ALCF

Polaris

• all three frameworks in the Conda module:
module use /soft/modulefiles 
module load conda
conda activate

• https://docs.alcf.anl.gov/polaris/data-science-workflows/frameworks/pytorch/

• The module is automatically setting various environment variables:
https://docs.alcf.anl.gov/polaris/data-science-workflows/frameworks/pytorch/#multi-gpu-multi-node-
scale-up

⏤ If you do a manual install without the module you need to set them yourself

https://docs.alcf.anl.gov/polaris/data-science-workflows/frameworks/pytorch/
https://docs.alcf.anl.gov/polaris/data-science-workflows/frameworks/pytorch/
https://docs.alcf.anl.gov/polaris/data-science-workflows/frameworks/pytorch/


Argonne Leadership Computing Facility11

Frameworks at ALCF

Aurora/Sunspot

• frameworks installed in frameworks module
module load frameworks

⏤ Activates the conda environment automatically

• Before torch 2.5 is fully adapted, Intel extension for PyTorch is required (Currently PyTorch 2.3 on Aurora) 
import torch
import intel_extension_for_pytorch as ipex

• Unfortunately no Jax on Aurora as of 10/2024

⏤ Intel has support for OpenXLA: https://github.com/intel/intel-extension-for-openxla

• Multiple environment variables for the distributed comms are automatically set by the frameworks module

⏤ Best practices constantly evolving so not documented here

https://github.com/intel/intel-extension-for-openxla


Argonne Leadership Computing Facility12

Polaris demo here

• JupyterHub: https://docs.alcf.anl.gov/services/jupyter-hub/

⏤ Login: https://jupyter.alcf.anl.gov/

• Getting an interactive session on the reservation:
qsub -I -l select=1 -l filesystems=home:eagle -l walltime=1:00:00 -q HandsOnHPC -A alcf_training

• To load the modules on Polaris:
module use /soft/modulefiles 
module load conda
conda activate

• Bash job submission:
qsub submission_script.sh

• For Aurora/Sunspot this would be fairly similar but the queue names and available storage systems can 
differ slightly

https://docs.alcf.anl.gov/services/jupyter-hub/
https://jupyter.alcf.anl.gov/


Argonne Leadership Computing Facility13

“Advanced” topics, performance considerations

• Extending Python environments with your own packages

• Mixed precision

• Distributed training for multi-GPU/multi-node training

• And much more in the docs:

⏤ https://docs.alcf.anl.gov/polaris/data-science-workflows/frameworks/pytorch/#deepspeed

https://docs.alcf.anl.gov/polaris/data-science-workflows/frameworks/pytorch/


Argonne Leadership Computing Facility14

Extending Python installs

Not every package is installed in the framework modules, you likely need to extend the environments to fit 
your needs

• You can extend the conda environment with a python virtual environment

⏤ python -m venv --system-site-packages /path/to/virtualenv
source /path/to/virtualenv/bin/activate

• Install packages to another location with pip

⏤ Not recommended

⏤ You could use ‘--user' when installing packages from pip or building from source

⏤ This defaults to the home directory, which is not ideal location due to performance and potential for conflicts 
and easy to mess it up. If different clusters share the home folder you can end up with binaries compiled to a 
wrong architecture/compiler/setup

⏤ You can set PYTHONUSERPATH environment variable to control where the ‘--user’–installed packages end up

• You can just install everything from scratch yourself

⏤ Start with conda and get going

⏤ Can be tricky to get everything right, don’t start with this one. Cuda version of PyTorch does not work on Aurora 
and so on. 



Argonne Leadership Computing Facility15

Mixed precision

• Modern GPUs have significantly better BF16/FP16/TF32 
throughput compared to traditional single precision 
floating point (FP32)

⏤ Not all parts of deep learning require the full float precision 
to get good results -> significant potential for speedup with 
negligible loss of predictive performance

• FP16 might not have enough range for loss/gradients

⏤ requires loss scaling

⏤ largely superseded by BF16 in deep learning applications as 
BF16 does not require loss scaling

• Pure FP16/BF16 rarely used in practice as certain 
operations require still better to be stored in FP32

⏤ Mixed precision required

⏤ Gradient accumulation

⏤ Holding a set of master weights

https://www.nvidia.com/en-us/data-center/a100/

https://blogs.nvidia.com/blog/tensorfloat-32-precision-format/



Argonne Leadership Computing Facility16

Mixed precision

• PyTorch,TensorFlow can take care of things automatically:

⏤ PT: https://pytorch.org/tutorials/recipes/recipes/amp_recipe.html
with torch.autocast(device_type=device, dtype=torch.float16)

⏤ TF: https://www.tensorflow.org/guide/mixed_precision
from tensorflow.keras import mixed_precision
policy = mixed_precision.Policy('mixed_float16')
mixed_precision.set_global_policy(policy)

• Frameworks like Megatron-DeepSpeed

⏤ Adjust Deepspeed config.json

▪ https://www.deepspeed.ai/docs/config-json/

⏤ Enable in Megatron with --bf16 flag

https://www.nvidia.com/en-us/data-center/a100/

https://blogs.nvidia.com/blog/tensorfloat-32-precision-format/

https://pytorch.org/tutorials/recipes/recipes/amp_recipe.html
https://pytorch.org/docs/stable/amp.html
https://www.tensorflow.org/guide/mixed_precision
https://www.deepspeed.ai/docs/config-json/


Argonne Leadership Computing Facility17

Quick intro to distributed training

• More GPU == more better?
⏤ Yes, but splitting a problem across multiple devices can require 

additional attention

⏤ The communication groups and such need to be prepared appropriately

• Data Parallelism
⏤ Having multiple copies of the same model operate on different data 

samples

⏤ Only communication strictly required is synchronizing the gradient 
updates before applying them

• Model parallelism
⏤ Splitting up a single model instance across multiple devices

⏤ Tensor parallelism, Pipeline parallelism etc.
⏤ Details not covered in this talk

• When doing parallelism, your batch size grows with more GPUs
⏤ global_batch_size=micro_batch_size * 

gradient_accumulation_steps*data_parallel_degree/model_parallel_deg
ree

⏤ “GBS=MBS*GAS*DP/MP”

⏤ For example, 2 nodes of 4 GPUs, a microbatch of 2 with gradient 
accumulation of 2, no model parallelism: GBS of 16==2*4*2*2

• Running at scale, you might also need to care about various things 
such as I/O, discussed in separate sessions

Layer 1

Layer 2

GPU1

Layer 3

Layer 4

Layer 1

Layer 2

GPU2

Layer 3

Layer 4

GPU1 GPU2

Layer 1

Layer 2

Layer 3

Layer 4

Tensor parallel

Data parallel

Layer 1

Layer 2
GPU1

Layer 3

Layer 4
GPU2

Pipeline parallel

microbatch 1 microbatch 2



Argonne Leadership Computing Facility18

Distributed setup at ALCF

• Setting up the communication world and ranks is 
required

⏤ MPI is a good backed for discovery (on the right). 

⏤ You could also script your own approach based on 
hostfiles generated by the scheduler

• In the script or in the code define the main process 
hostname and communication port. For example these 

env variables are automatically accessed by torch 

distributed initialization:

export MASTER_ADDR=$(hostname)

export MASTER_PORT=29401

• You could also use MPI and sockets library to figure the 

master address and port and broadcast them

• In the code, set the device and initialize torch distributed. 

• alternative is to use torchrun: 

https://pytorch.org/docs/stable/elastic/run.html

(Also needs some information like above)

from mpi4py import MPI
rank = int(MPI.COMM_WORLD.Get_rank())
world_size = int(MPI.COMM_WORLD.Get_size())
device_count = torch.cuda.device_count()
local_rank = rank % device_count
torch.cuda.set_device(local_rank)

torch.distributed.init_process_group(
backend=“nccl”,
world_size=world_size,
rank=rank,

)

https://pytorch.org/docs/stable/elastic/run.html


Argonne Leadership Computing Facility19

For more information

• ALCF docs: https://docs.alcf.anl.gov/

• Documentation for various frameworks

• support@alcf.anl.gov

• Ask at the workshop

https://docs.alcf.anl.gov/


Thank you!


	Slide 1
	Slide 2: Deep Learning Frameworks
	Slide 3: Outline
	Slide 4: Frameworks
	Slide 5: PyTorch
	Slide 6: TensorFlow
	Slide 7: JAX
	Slide 8: Demo to the intel dev cloud instance
	Slide 9: Frameworks at ALCF
	Slide 10: Frameworks at ALCF
	Slide 11: Frameworks at ALCF
	Slide 12: Polaris demo here
	Slide 13: “Advanced” topics, performance considerations
	Slide 14: Extending Python installs 
	Slide 15: Mixed precision
	Slide 16: Mixed precision
	Slide 17: Quick intro to distributed training
	Slide 18: Distributed setup at ALCF
	Slide 19: For more information
	Slide 20: Thank you!

