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Agenda

Day 2: Wednesday 7 May 1:00pm-4:30pm CDT (11:00am-2:30pm PDT)

1:00 - 1:45pm Efficient training with Cerebras, scaling laws, how to train LLMs
1:45 - 2:45pm User training: hands-on LLM model Training

2:45 - 2:50pm Q&A

2:50 - 3:05pm Break

3:05 - 4:05pm HPC: CS for HPC: SDK, CSL and past examples

4:05 - 4:25pm Roadmap presentation

4:25 — 4:30pm Closing, final Q&A
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Efficient training with Cerebras,
scaling laws




The goal of computational efficiency

Model quality |
(test loss)

Compute cost (FLOPSs)
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The goal of computational efficiency

Model quality |
(test loss)

For training:
* End-to-end training run

V
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The goal of computational efficiency

Model quality
(test loss)

For training:
« End-to-end training run
« All restarts, all attempts
» All debug (eg for distributed runs)
All prep work (HP tuning, etc)

@cerebras

»
»

V
Compute cost (FLOPSs)

© 2024 Cerebras Systems Inc. All Rights Reserved 9



The goal of computational efficiency

Model quality
(test loss)

For inference:

inference on

» Forward pass per sample
» Expected number of samples to run

Model optimization (quantization, etc.)

V

»
»

Compute cost (FLOPSs)

@cerebras
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A few approaches to higher efficiency

« Efficiency with current models
» Careful data prep and cleaning
» Meticulous selection of model features and training approaches via small-scale experiments
» Precise planning and goal setting with scaling laws

 Efficient new models
» A special sorcery: sparsity (requires specialized hardware)

((CEel'ebraS © 2024 Cerebras Systems Inc. All Rights Reserved 11



A few approaches to higher efficiency

« Efficiency with current models
» Careful data prep and cleaning
» Meticulous selection of model features and training approaches via small-scale experiments
» Precise planning and goal setting with scaling laws

 Efficient new models
» A special sorcery: sparsity (requires specialized hardware)
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CeMb pa3 OTMepb, OOUH OTPEXKb
Measure seven times, cut once (= Better safe than sorry)

/ ¢
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https://lubok.club/iluystracii/32713-sem-raz-otmer-odin-raz-otrezh-illjustracija-54-foto.html
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CeMb pa3 oTMepb, OOUH OTPEXKb
Measure seven times, cut once (= Better safe than sorry)

Large GenAl model training runs are VERY long and expensive
« Weeks to months on thousands of GPUs, millions of $$

You want to be sure you are “on spot” and getting the best model you can
* Errors are costly

It's better to spend a bit more time and resources on prep, but do the long training run right
« Experiment as much as possible with small models, transfer learnings to a larger target model

Predict expected results

<@erebras © 2024 Cerebras Systems Inc. All Rights Reserved 14



Predict expected results. How?

Leverage scaling laws!
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What is a scaling law and why do we need one”?

« Empirical scaling laws for the error (eg cross-entropy loss) as a function of training FLOPs

* Prior work:

» “Deep Learning Scaling is Predictable, Empirically”, J. Hestness et al. (2017)
« “Scaling Laws for Autoregressive Generative Modeling”, J. Kaplan et al. (2020)

« “Training Compute-Optimal Large Language Models”, J. Hoffman et al. (2022)

0.71 —— Token Error Rate 1011 -10B
2 -~~ Token Error Rate Trend -5B
085 1010 ' -2.5B
§ 0.60 4 4 n A\ \
2 g(m) = 3.87 m13 10° o4 \ B
i \ -500M
3 .50 10° £ -250M
2 \
£ 0.46
2 N 10 L 75M
€ 0.42 A1 N
S 2
039 e L=2.57-C~0048 . 106 .
0.36 1.5 v ' . - ". 10°
5ls 220 921 222 923 924 925 226 927 10~ 10 10 10° 10 104 | 107 1018 1019 1020 1021 1022
Training Data Set Size, Number of Tokens (Log-scale) FLOPS
J. Hestness, best-fit models for NMT J. Kaplan, loss vs training PF-days J. Hoffman, loss vs training FLOPs

Allows to predict model quality as a function of model size and dataset size
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Cerebras-GPT Compute-Optimal Scaling Law for Pile
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Training FLOPs

Figure 2: Pile test set loss given pre-training FLOPs
for Cerebras-GPT, GPT-J, GPT-NeoX, and Pythia.

https://arxiv.org/abs/2304.03208
@cerebras

L(f) = (f/5.984€22) %0737 1 0.5066

At 20 TPP (Tokens Per Parameter)

Can use scaling laws to

* Predict loss for given scale, set target
* Budget compute time

« Test whether training run is on-track

© 2024 Cerebras Systems Inc. All Rights Reserved



https://arxiv.org/abs/2304.03208

We can use scaling laws to predict model quality, assuming “good”
hyperparameters.

How to find optimal hyperparameters for very large models?

((CEel'ebraS © 2024 Cerebras Systems Inc. All Rights Reserved



Maximal Update Parameterization (uP) and uTransfer

« Standard parameterization
» Weights are initialized from normal distributions
« Does not account for dynamics at all scales 1.00- —e— Cerebras-GPT
 Different hyper-parameters for models of SRR
different sizes
« Maximal Update Parameterization (uP)

« Control initialization, learning rate, activation
magnitudes to be stable across model scale

« uTransfer same hyper-parameters at all scales

0.75 -
0.50 -

0.25 -

- Advantages of pP

« Tune LR hyper-parameters for smaller models,
re-use for larger models

13B

% from Cerebras-GPT scaling law
o
o
o
!

-0.75 -
* More stable training dynamics
° More predictable Scaling |aW [ ||:I|-|(;19 [ ||:I|-|(;20 [ ||:I|-|C;21 [ ||:I|-|(;22 [
« Better average downstream capabilities Training FLOPs
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Scaling laws in use: initial Arabic scaling laws

Arabic Dev Loss vs. FLOPs

* Pink: restricted and fixed
tokens/parameter, 20TPP

« Orange: full dataset for all runs, 55B
tokens

« Similar power-law exponents

 Training on full dataset gives better loss
for slightly suboptimal compute
« 30B model only marginally better than

13B: suggests not enough data to
continue scaling model size

Arabic Dev Set Loss (Lower is Better)

Approximate Compute FLOPs (log scale)
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Scaling laws in use: multilingual modeling for Jais

Arabic Dev Loss vs. FLOPs
 Add more data: mix Arabic data with The

Pile English corpus
* Tested mix ratios 1:2, 1:1, 2:1 Arabic:English

* Trained 111M — 2.7B parameter models on
different mixes

« Multilingual: Costs extra compute

» Arabic modeling

» Scaling laws allow us to inspect improvement
over expected trend

« To achieve similar loss to Arabic-only
models, 1:2 Ar:En models need to increase
compute ~3.7x

* The “multilingual gap” is projected to shrink
slowly with scale (dotted trend lines)

« However, models improve faster when we
grow dataset size (Grow TPP)

Arabic Dev Set Loss (Lower is Better)

Approximate Compute FLOPs (log scale)
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Jais-30B-v3 sets new record for open-source Arabic LLMs, finishes training
on 1.3 Trillion tokens

Jais-30B outperforms on all common NLP benchmarks in Arabic

59.3
53.1

49.2 482 484 484 493

38.1 39.1
35.1 35.1

33.9

32.1
31.2 31.0
28.9 28.6 30.2 oo
: 26.4

MMLU Hellaswag ARC-C TruthfulQA

M Jais-30b-chat acegpt-13b-chat BLOOMz (7.1B) LLaMA (30B) falcon-40b_instruct

Note, results are displayed in order of the legend.
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BTLM-3B-8K: example of putting it all to work

Bittensor Language Model trained by Cerebras for OpenTensor

» The state-of-the-art 3B parameter open-source
language model until release of Stable LM 3B

« Beats many 7B parameter models

BTLM-3B-8K: The New State-of-the-Art 3B Model

52.0%

* Trained on SlimPajama, natively supports 8k
sequence lengths

48.3%

44.5%

« Small parameter count makes it ideal for many
edge use cases

40.8%

Average Accuracy Across 12 Tasks

 The most popular 3B parameter model on
HuggingFace with >1 million downloads

« Recently released chat-optimized version ,
adapted using IFT and DPO &

» Apache 2.0 license for commercial use

» Created in partnership with OpenTensor

(@erebras © 2024 Cerebras Systems Inc. All Rights Reserved



Our secret behind high quality of BTLM?
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Many (cheap) ablations at 111M scale
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Loss improvements and changes in
training FLOPs for each ablation

starting from the Cerebras-GPT uP,
111M baseline.

Variant Loss | FLOPs
Baseline: Cerebras-GPT pP, | 2.586 | 2.23el8
111M
TPP: 20 — 236 2.386 | 2.63el19
Tdecay : 10X — 118X 2.328 | 2.63el9
Act.: GeLU — SwiGLU 2.296 | 2.63e19
L RoPE 2.259 | 2.60e19
L, ALiBi 2.267 | 2.60e19
l, uP Tuning 2.258 | 2.60e19
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One more advice: choose your batch size carefully

Choose compute efficient batch size

Batch size too small: Efficient and Approximate Per-Example Gradient
Norms for Gradient Noise Scale

» Gradient update is very noisy, poor approximation of
the gradient over the entire dataset

e Harder to pa rallelize Gavia Gray Anshul Samar Joel Hestness
Cerebras Systems Cerebras Systems Cerebras Systems
. Toronto, Canada Sunnyvale, CA Sunnyvale, CA
(] B atCh SiZe too | a rg e: gngdb.labs@gmail . com anshul@cerebras.net joel@cerebras.net
« Approximation is too close to true gradient over the
: : Abstract
entire dataset, updates from different batches are
too S| m | Ia r to be u Sefu I Gradient Noise Scale (GNS) is valuable to compute because it provides a suggestion
for a compute efficient batch size during training: small enough to be compute
H efficient and large enough to take advantage of parallelism. While it can be
y Easy to para”el |Ze, bUt WaSterI a valuable tool, computing GNS is often cumbersome or expensive due to the
o difficulty of obtaining gradient norms over a small batch of examples (smaller than
° I I the training batch used). An existing trick for collecting “efficient” per-example
H ow to Ch 00s€e th eIl g ht batCh SIZE ¢ gradient norms is inefficient in transformer or convolutional models. By assuming
. . activations are normally distributed, we compute an approximate per-example
° U se G rad e nt N oise S ca I e (G N S) gradient norm that tracks the true per-example gradient norm in practical settings.

Using this approximation, we construct a Scaled Output Gradient Noise Scale
(SOGNYS) that is generally applicable at negligible cost and provides additional
feedback to the practitioner during training.

((Ceel'ebras © 2024 Cerebras Systems Inc. All Rights Reserved 26



Practical implications for compute-efficient training

» Leveraging scaling laws allows predicting model quality as a function of available data and
model size

» Constants in the power law are dataset-dependent
« When start working on a new model, start with smaller models, fit the power law
« If | spent $X on training, | might expect model quality Y, and my inference cost will be $Z

« Maximal Update Parameterization (uP) allows to find optimal hyperparameters via
hyperparameter sweeps on small models and transfer these optimal hyper-parameters to
more expensive large model runs. It also makes training more stable.

@cerebras



A few approaches to higher efficiency

« Efficiency with current models
» Careful data prep and cleaning
» Meticulous selection of model features and training approaches via small-scale experiments
» Precise planning and goal setting with scaling laws

 Efficient new models
» A special sorcery: sparsity (requires specialized hardware)

<@erebras © 2024 Cerebras Systems Inc. All Rights Reserved 28



Neural Networks are Sparse

Sparsity opportunities are everywhere

* Neural networks have native sparsity
* e.g. ReLU or Dropout Dense Sparse

* Neural networks can be made sparse
e e.g. sparse weights
« Models are over parameterized by design
« Training is act of discovering important weights

Unstructured
Weight Sparsity

Training dense is wasteful and inefficient

« But not all hardware can take advantage of all
forms of sparsity

(@erebras © 2024 Cerebras Systems Inc. All Rights Reserved



Neural Networks Can
be Made Sparse

70  mmm Model sparsification for inference i
W= Model sparsification for training B
60 B Ephemeral sparsification
Extensive sparsity research community 50 ' Hardware acceleration for sparsity i
Bmm  Software acceleration for sparsity I
» Techniques show 10x+ opportunity 40 Transformer
» Practical benefits include reducing 30 Resyeté =I
compute/memory and improving accuracy | g | |l|
Start of second Al winter AlexNet L l
* Research has increased dramatically 10 l LS;M GPUs forDL | i II
OO@O\—NCOQ'LDCOI\OO@O\—NMQ’U)@NOOO‘:O:NU)Q‘LO(ONOOO)O
333338358388535553553552RRR0R0018

Torsten Hoefler et al., Sparsity in Deep Learning: Pruning and growth for efficient inference and training in neural networks

ML Community has invented various sparsity techniques
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Sparsity Acceleration is Memory Bound

Memory bandwidth built for sparsity

* Traditional hardware built for dense Memory Bandwidth (Byte/FLOP)

* High data reuse = caching = low mem bw Required Available

* Wafer-scale memory built for sparse
* Low data reuse = eaching = high mem bw Dense MatMul

* Enabled by orders of magnitude more mem bw " H100
~0.001 0.003

e Static and dynamic sparsity Sparse MatMul

e Structured and unstructured sparsity E X . 1 WSZE-3

CS-3 accelerates all forms of sparsity

(@erebras © 2024 Cerebras Systems Inc. All Rights Reserved



Accelerating All Forms of Sparse Training

Examples of sparse training opportunities FLOP Reduction From Sparsity
100%

« Dynamic activation sparsity
* e.g. Google: 95% sparse ReLU FFN in LLMs'

« Structured weight sparsity
* e.g. Mistral: 75% sparse FFN MoE 8x7B2 1.7x 2.0x

60%

80%

2.8x

* Unstructured weight sparsity
» e.g. Cerebras: 75% sparse SPDF GPT3

Relative FLOPs

40%

Solving unsustainable scaling for training
20%

* Only HW to accelerate all forms of sparsity
» Even future sparse techniques

0%
ReLU MoE SPDF

1 Li et al., The Lazy Neuron Phenomenon: On Emergence of Activation Sparsity in Transformers, 2023 mDense mSparse
2 Jiang et al., Mixtral of Experts, 2024
3 Thangarasa et al., SPDF: Sparse Pre-training and Dense Fine-tuning for Large Language Models, 2023

((Cc.erebras © 2024 Cerebras Systems Inc. All Rights Reserved



To summarize...

We care about computational efficiency of training and inference:
improve model quality, decrease cost

« Efficiency with current models

 Run many experiments at a small scale — they are cheap! (Measure seven times, cut once)
* Rely on scaling laws to reason about future large runs, before starting an expensive final run
» Rely on Maximal Update Parametrization to transfer hyper-parameters tuned on small models

» A special sorcery for even higher computational efficiency: sparsity

» Requires specialized hardware to translate theoretical speed-ups into practical, we at Cerebras
are lucky to have it!

<@erebras © 2024 Cerebras Systems Inc. All Rights Reserve:



Potential GenAl use cases for science

Foundation LLMSs for science: extract key insights and summarize content from scientific
literature

 Ingest all existing knowledge from publications, books, etc

« Add other modalities, e.g. plots from papers

* RAG with customized domain-specific embedding models

« Q&A and search

Genomic foundation models: personalized medicine, better understanding of diseases

» Predict functional consequences of genetic variations
» Predict functional elements such as promoters, enhancers, transcription factor binding sites

» Better diagnostics, predict drug responses

Molecular foundation models: protein engineering, material science
» Predict drug-target interactions
* Predict material properties

Multimodal models for science

« E.g. radiology scans and reports; satellite imagery and other climate-related imagery and climate
reports

((CEel'ebraS © 2024 Cerebras Systems Inc. All Rights Reserved



Sparsity-Accelerated Training




Modern models need more and more compute

Memory and compute requirements

100,000 Estimated time-to-train:
Microsoft 1T-
VIRl e e B e e i ) e e o 3 e e Icroso. jmu * NVIDIA Megatron-LM:
S 10,000 - | trained on 512 V100 (32 DGX-2H)
§ 1| e e o 5§ e ° for about 10 days
:a:‘ 1,000 Tf'”B « OpenAl GPT-3:
2. T-NLG | | trained on 1024 V100 (64 DGX-2H)
cE> Megatron-LM @ | | for about 116 days
w  10006————iil | L] N | |
£ GPT-2
£ ® ®
© | |
= 10 BERTLarge | | Model growth not sustainable
o =z 0 Q———F——rF G | }
2 BERT.Base ‘ | |
, | 2CB  54GB 272GB 2.8TB  16TB
1 10 100 1,000 10,000 100,000

Model memory requirement , GB
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Accelerating beyond today’'s models with sparsity

To scale beyond today’s state of the art, we need more than only larger models
Large neural networks are highly over-parameterized (e.g., pruning is common for inference)

Sparsity opens up another dimension of advancement beyond improving model architecture
Cerebras is the only system capable of accelerating Al with any sparsity

» Faster training from sparse models

« GPT-3 1.3B pre-trained with up to 75% sparsity and 2.5x less training FLOPs with same downstream
accuracy and inference FLOPS as dense

* Higher accuracy from larger sparse models

* ResNet 90% sparse is 3.5% higher accuracy with 2x fewer FLOPs than larger model
 GPT 50% sparse is 0.4 better perplexity with 2.4x fewer FLOPs than larger model

» Faster inference from sparse models

» GPT-3 1.3B pruned to 84% sparsity and 3x less inference FLOPs with same accuracy as dense

@erebras © 2024 Cerebras Systems Inc. All Rights Reserve:


https://arxiv.org/abs/2303.10464
https://arxiv.org/abs/2303.11525
https://www.cerebras.net/blog/creating-sparse-gpt-3-models-with-iterative-pruning

Sparsity Demo

« Sparse weights remain sparse for the entire duration of training (“static sparsity”). To change
sparsity levels, training will need to be re-started.

« Sparsity config parameters:
* sparsity: the desired sparsity level between 0 and 1.
* init_method: the type of sparsification (random or topk).
« Random, weights are sparsified randomly
« Topk, the weights with the lowest magnitude are sparsified

« param_name_patterns: optional parameter to specify which layers to sparsify. Any regex
provided here will be matched to layer names and if it appears in the layer name, that
layer will be sparsified

@cerebras



Memory Designed for Unstructured Sparsity

Full Performance on All BLAS Levels

GPU

Matrix-Matrix
GEMM

C « aAB + C

C | +=| A

Massive bandwidth jump!

AN

Byte/FLOP

1 Byte/FLOP

Matrix-Vector
GEMV

y « aAx + Ly

2 Byte/FLOP

Vector-Vector
DOT

a < (x,y)

El+:

Cerebras

3 Byte/FLOP |

Vector-Scalar
AXPY

ye—ax +y

] +=2

Sparse GEMM is one AXPY per non-zero weight

@arebras
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Streaming Sparse Weights

MemoryX
Weight Sparse
Memory Weights
Sparsify D —
Sparse
- Gradients

Optimizer + Sparsity
Compute

@erebras

SwarmX

Sparse

Weights
—

47
Sparse

Gradients

—
-«

Sparse
CS-2
Compute

Weight sparsity induced in MemoryX

« Sparse weights streamed to all CS-2s

« Sparse gradients reduced on the way back
« Sparse weight updates on sparse matrix

No change to the weight streaming model
Same flow supports dense and sparse

© 2024 Cerebras Systems Inc. All Rights Reserved



Demo: LLM Variations




Q&A Session

@erebras © 2024 Cerebras Systems Inc. All Rights Reserved



@erebras

Cerebras SDK for HPC Research
and Applications

Leighton Wilson

leighton.wilson@cerebras.net

May 2024




Agenda

 Architecture and Programming Model
» Cerebras SDK Overview
« HPC Research and Applications

» Local Access and Next Steps

@cerebras



Architecture and Programming
Model




Cerebras Wafer-Scale Engine
(WSE-2)

The (2"9) Largest Chip in the World

850,000 cores optimized for sparse linear algebra
46,225 mm?2 silicon

2.6 trillion transistors

40 Gigabytes of on-chip memory

20 PByte/s memory bandwidth

220 Pbit/s fabric bandwidth

7nm process technology

Cluster-scale acceleration on a single chip

© 2024 Cerebras Systems Inc. All Rights Reserved
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CS-2 Architecture Basics

SRR ER =l Bl
15 15 15 5 15 15
Sl Bl Bl B S Bl Bl
15 5 5 5 15 15
Data <= SRR - IR R << Data
4 4 7 4 4 &_t
TS S wooow
SIHBEBE - [N ER
15 15 i 5 5 5
‘-:.2.2.?-\‘!\-\--‘:.2.2.2
N . X

A

Fabric router <

A 4

v

A A

Offramp | [ Onramp

A 4

Processor

i

Memory

@cerebras

The CS-2 appears as a logical 2D array of
individually programmable Processing Elements

Flexible compute

« 850,000 general purpose CPUs

* 16- and 32-bit native FP and integer data types

- Dataflow programming: Tasks are activated or
triggered by the arrival of data packets

Flexible communication

* Programmable router

 Static or dynamic routes (colors)

« Data packets (wavelets) passed between PEs
« 1 cycle for PE-to-PE communication

Fast memory

* 40GB on-chip SRAM
« Data and instructions
* 1 cycle read/write

© 2024 Cerebras Systems Inc. All Rights Reserved



Flexible Compute

Tensors <

@cerebras
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:

Memory

Dataflow Execution Model
« Tasks may be triggered by wavelets or activated
 Each color activates a distinct task

Independent programs specified for regions of PEs

« Programs specify computation for the processor
and communication via colors

« Parametrized programs allow execution of
different control flow on different PEs

Asynchronous operations performed by launching
microthreads

Control flow is straightforward to reason about
« Tasks are non-preemptive

* |nstruction to activate another task enable state-
machine behavior

© 2024 Cerebras Systems Inc. All Rights Reserved



Flexible Communication

PE Routing Table Resulting Routes
North
V4 N
. . v/ E East
Direction v s| ——
Leads to...
W eads to
v R
South Ramp

Colors (24 possible)

Router-to-router communication: 1 cycle

Router-to-processor communication: 7 cycles

@cerebras

PEs communicate to adjacent PEs and their processor
through their routers

The router is a 24-entry table on each PE associating
colors with directions
» Table entries mapped to PE memory
« Up to 24 routes (i.e. colors) may be specified at
compile-time for each PE
Complex communication patterns
« Dynamic updating of routes at runtime

« Multiple routing table entries per color enable
multicast. broadcasting data in multiple directions
at once each cycle

Input/ output queues in each PE alleviate back
pressure at routers during runtime

Programmer feeds tensors into the fabric from outside
world, specified in host program

© 2024 Cerebras Systems Inc. All Rights Reserved



Fast Memory

* 40GB of on-chip SRAM
- PE « Uniformly distributed on wafer
y » 48kB per PE

Fabric router . * Programmer can read/write memory for regions
of PEs at once from host
Offramp Onramp « Local PE memory is not directly addressable by
3 other PEs, but is directly addressable by host
Processor program

« SIMD possible for vector instructions

Memory

A 4

PE local memory read-write: 1 cycle

<@erebras © 2024 Cerebras Systems Inc. All Rights Reserved



Memory performance at all BLAS levels

Massive bandwidth jump!

GPU Cerebras
: /\
i 0.005 1 Byte/FLOP 2 Byte/FLOP 3 Byte/FLOP E
Matrix-Matrix Matrix-Vector Vector-Vector Vector-Scalar
GEMM GEMV DOT AXPY
C <« aAB + C y « aAx + [y a < (x,y) ye—ax +y

cC | +=| A B += A o] 4= +=|Z|
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Cerebras SDK

@erebras



Cerebras SDK

A general-purpose parallel-computing platform and API allowing software developers to write custom

programs (“kernels”) for Cerebras systems.

= Cerebras SDK GUI

CS L : Ce re b ras Softwa re La n g uag e @ Current folder: <filepath containing artifacts used in the GUI> | SUBMIT .

il © Colors

Language o @ s -

NNNNNN

W 1x_in

Host APIs with Python

5 :
4 u3 it
% y-ou memcpy NOTYPE
W ab_in ‘}
R

]

memset NOTYPE

mmmmmm

Libraries Optimized primitives <
°

|| | | || | | | |
bS] ] ]
@ Instruction Trace @ * ©® Source Code @ © Wavelet Trace & ¥
Simulator Debugger | o | comoniomsrehmumisccomode-samplstmutesang: | ot . T
wavelet-data/code.cs| 1x_in, 2 Ax_... ¥ ‘ i Sent, Receiv
T I 1 varglobal: 16 = 0; Showing Wavel: received on 1,2,3,4, Wavelet Formatted as
i16
o o s 3 color main_color = 0;
olor = 1; cycl Coll ctl  Link Head
P e rfo rm a n Ce . . . get_dsd (fabout_dsd, .{.fabric_color = 5 T e
Visualization
f' 1890 3 0o E 0x0000
profiler sk s wavlt s 161 voi
a £ ovanno
Copyright © Cerebras 2021 Cs1 [6x6] ALL @ SELECTEDPE: [2,1]
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From a Programmer’s Perspective

Host CPU(s): Python Device: CSL

« Loads program onto simulator or CS-2 system  Target software simulator or CS-2

« Streams in/out data from one or more workers ¢ CSL programs run on groups of cores on the
WSE, specified by programmer

« Executes dataflow programs

Device Read/Write
>
< - | |
Memory |/O +

| e m————— |
_ Data Streams

* Reads/writes device memory

@cerebras



CSL: Language Basics

* Types

* Functions

» Control structures

» Structs/Unions/Enums
« Comptime

 Builtins

* Module system

« Params

» Tasks

« Data Structure Descriptors
» Layout specification

@cerebras

— Straight from C
(via Zig)

— CSL specific

Used for writing
device kernel code

Familiar to

C/C++/HPC
programmers
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Familiar Features
var x : 116;

TypeS o . const y = 42;
« Syntax similar to other modern languages — Go, Swift, Scala, Rust var arr : [16, 4]f32;

« Float (f16, £32), signed (116, i32), unsigned (ul6, u32), boolean (bool) var ptr : xil16;

Functions fn factorial(x : i32) 132 {
° Z|g_sty|e Syntax if (x <= 2) return x;
« Pass by value or reference and inlining automatically handled return x x factoriallx - 1);

}
Control Structures
« Traditional control flow: if, for, while, with zig and C style syntax
if (x < 10) { var x: ulé = 100; var idx: ulé = 0: const xs = [10]i16 { 0, 1, 2, 4 };
y +=5; while(x > 99) { while (idx < 5) : (idx += 1) { for (xs) |x,idx| {
} else { .
y += 10; } } }
}
ditional while loop while loop with iterator range for loop
conditionals (also provides C-style for)

<(Ceel"ebl’as © 2024 Cerebras Systems Inc. All Rights Reserved



Quality of Life Features

Comptime

« From Zig, block of code where all evaluation occurs at compile time
« Useful for frontloading computation to avoid runtime overhead

Params

» Like #define, but strongly typed
« Have to be “bound” completely during compilation

Modules

comptime {
const f23 = factorial(23);

param M : 1i16;
param N : 1i16;

param is_left_edge : bool;

* Any CSL source code file is a “Module,” importable into other modules
« Imported modules acts as an instance of a unique struct type
« Multiple imports of the same module allowed

@?5&#»35

var x = 0;
fn incr() void {
X =X+ 1;

by

m1.csl

const vl
const v2

vl.incr();
v2.incr();

// vl.x ==

@import_module("ml.cs1"); p1.csl

@import_module("ml.cs1");

v2.incr();

1; v2.X == 2;

© 2024 Cerebras Systems Inc. All Rights Reserved



Performance Features

Builtins

« Similar to function calls with @ in front of function name
« Language extensions without special syntax

« Used for invoking special compiler functionality

// Initialize a tensor of four rows
// and five columns with all zeros.
var matrix = @zeros([4,5]f16);

Tasks

+ Core building blocks of CSL o obatoten: 416 = 0

« Special functions used to implement dataflow programs

« Data tasks are triggered by incoming wavelets on a task recvTask(data: ul6) void {
specific color globalvalue = data;

« Local tasks are triggered with calls to @activate }

comptime {
@bind data task(recvTask, recvColor);

@set_local_color_config(recvColor,
A .rx = .{ WEST }, .tx = .{ RAMP } });

((Ceel"ebl‘as © 2024 Cerebras Systems Inc. All Rights Reserved



Performance Features
Data Structure Descriptors (DSDs)

Provide a mechanism to consider an array, and an access pattern, as a complete unit

« Operations using DSDs run for multiple cycles to complete an instruction on all data
referenced by the DSD

« Performance and ease of use: lifts level of program to talking about whole structures, while
lowering cost of computing indexing into hardware

const dstDsd = @get_dsd(memld_dsd, .{ .tensor_access = |i|{5} —> dst[i] });
const srcODsd = @get_dsd(memld_dsd, .{ .tensor_access = |i|{5} —> src@[i] });
const srclDsd = @get_dsd(memld_dsd, .{ .tensor_access |i]{5} —> srcll[i] });

const fabDsd = @get_dsd(fabout_dsd, .{.fabric_color = output_color, .extent = 1});

task main_task() void {
@faddh(dstDsd, src@Dsd, srclDsd);
@fmovh(fabDsd, dstDsd);

}

DSDs are a unifying concept that provides for complex memory reads and writes and
fabric reads and writes

<(Ceel"ebl’as © 2024 Cerebras Systems Inc. All Rights Reserve:



SDK Example Programs Available

Repository: github.com/Cerebras/csl-examples

Introductory Tutorials « Conjugate Gradient

GEMV » Preconditioned Conjugate Gradient
GEMM » Finite Difference Stencil Computations
Cholesky Decomposition « Mandelbrot Set Generator

1D and 2D FFT « Shift-Add Multiplication

7-Point Stencil SpMV * Hypersparse SpMV

Power Method « Histogram Computation

((cerebras © 2024 Gerebras Systems Inc Al ights Reserved
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Cerebras and KAUST use CS-2 to achieve performance comparable to
world’s largest supercomputers

Cerebras CS-2 achieves real memory bandwidth performance that
rivals best-case performance on world-leading supercomputers

» Researchers redesigned a Tile Low-Rank Matrix-Vector
Multiplication (TLR-MVM) algorithm for Cerebras CS-2, o
taking advantage of the ultra high memory bandwidth

 Provided researchers with CG-1 Al supercomputer to
run this simulation 10°.

» Achieved sustained memory bandwidth of 92.58 PB/s
across 48 CS-2 systems — higher than Frontier (#1
TOP500), comparable to Fugaku (#4 TOP500)

Fugakul

/| Leonardo|

Summit]

81,6 PFlOD/S/ 73— 7/
TR Candor Galaxy

95.38 PB/s

GFlop/s

g - Condor Galaxy (48 Cerebras CS-2)
106 4

—— Fugaku (158976 Fujitsu A64FX)
/ Frontier (37888 AMD MI250X )
y \ - - - LUMI (10240 AMD MI250X )
cn 2023 Gordon Bell Prize finalist , — Leonardo (13624 NVIDIA AL00)
—— Summit (27648 NVIDIA V100)
-@- TLR-MVM on 48 Cerebras CS-2 (Relative)
= TLR-MVM w/ constant ranks on Fugaku
MVM w/ constant ranks on Frontier
10° T T ,
1072 107! 10° 10! 102
Flop/Byte
Paper:
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TotalEnergies achieves 228x speedup vs. A100 on seismic imaging

algorithm

“As can be seen, when the largest problem is solved, a
speedup of 228x is achieved... Moreover...it is unlikely
that such a performance gap can be closed... given
the strong scalability issues encountered by this kind of
algorithm when using a large number of multi-GPU nodes
in HPC clusters.”

Speedup of 228x
achieved with
Cerebras

121
; |
g

Diego Klahr VP
VP of Engineering at TotalEnergies

Paper:

@cerebras
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Massively scalable stencil algorithm

Mathias Jacquelin®
Cerebras Systems Inc.
Sunnyvale, California, USA
mathias.jacquelin@cerebras.net

Abstract—Stencil computations lie at the heart of
many scientific and industrial applications. Unfortu-
nately, stencil algorithms perform poorly on machines
with cache based memory hierarchy, due to low re-
use of memory accesses. This work shows that for
stencil computation a novel algorithm that leverages
a localized communication strategy effectively exploits
the Cerebras WSE-2, which has no cache hierarchy.
This study focuses on a 25-point stencil finite-difference
method for the 3D wave equation, a kernel frequently
used in earth modeling as numerical simulation. In
essence, the algorithm trades memory accesses for data
com ication and takes ad ge of the fast
nication fabric provided by the architecture. The algo-
rithm —historically memory bound— becomes com-
pute bound. This allows the impl tation to achi
near perfect weak scaling, reaching up to 503 TFLOPs
on WSE-2, a figure that only full clusters can eventually
yield.

Index Terms—Stencil computation, high perfor-
mance computing, energy, wafer-scale, distributed

'y, multi-pr architecture and micro-
architecture

I. INTRODUCTION

Stencil computations are central to many scientific prob-
lems and industrial applications, from weather forecast (
[32]) to earthquake modeling ( [19]). The memory access
pattern of this kind of algorithm, in which all values in
memory are accessed but used in only very few arith-
metic operations, is particularly unfriendly to hierarchical
memory systems of traditional architectures. Optimizing
these memory operations is the main focus of performance
improvement research on the topic.

Subsurface characterization is another area where sten-
cils are widely used. The objective is to identify major
structures in the subsurface that can either hold hydrocar-
bon or be used for CO, sequestration. One step towards
that end is called seismic modeling, where artificial per-
turbations of the subsurface are modeled solving the wave
equation for given initial and boundary conditions. Solv-
ing seismic modeling efficiently is crucial for subsurface
characterization, since many perturbation sources need to
be modeled as the subsurface model iteratively improves.
The numerical simulations required by seismic algorithms
for field data are extremely demanding, falling naturally
in the HPC category and requiring practical evaluation

$Equal contribution.

Mauricio Araya-Polo® and Jie Meng

TotalEnergies EP Research & Technology US, LLC.

Houston, Texas, USA
mauricio.araya@totalenergies.com

Traditional architecture WSE
L1 Memory
L2 & L3 2
DRAM 2
Off-node interconnect Fabric & routers

TABLE I: Equivalences between traditional architectures
and the WSE

of technologies and advanced hardware architectures to
speed up computations.

Advances in hardware architectures have motivated al-
gorithmic changes and optimizations to stencil applica-
tions for at least 20 years ( [23]). Unfortunately, the
hierarchical memory systems of most current architectures
is not well-suited to stencil applications, therefore limiting
performance. This applies to multi-core machines, clusters
of multi-cores, and accelerator-based platforms such as
GPGPUs, FPGAs, etc. ( [2], [5]). Alternatively, non-
hierarchical architectures were explored in this context,
such as the IBM Cell BE ( [3]), yielding high computa-
tional efficiency but with limited impact.

A key element for large scale simulations is the potential
of deploying substantial number of processing units con-
nected by an efficient fabric. The Cell BE lacked the former
and it had limited connectivity. Another example of non-
hierarchical memory system is the Connection Machine (
[12]), which excelled on scaling but at the cost of a very
complex connectivity. In this work, a novel stencil algo-
rithm based on localized communications that does not
depend on memory hierarchy optimizations is introduced.
This algorithm can take advantage of architectures such
as the WSE from Cerebras ( [4]) and potentially Anton
3-like systems ( [28]). These are examples of architectures
addressing both limitations described above.

Another angle to be considered is the availability of
hardware-based solutions in the market. Literature re-
view yields no generally available hardware architecture
addressing the specific bottlenecks of stencil applications.
Only a few custom designs examples are available ( [10],
(14]).

In this work, an implementation of such seismic mod-
eling method on a novel architecture is presented. The
proposed mapping requires a complete redesign of the
basic stencil algorithm. The contribution of this work is
multi-fold:

© 2024 Cerebras Systems Inc. All Rights Reserved
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TotalEnergies seismic research overview

Common computational approaches to solving seismic imaging

problems, such as stencil methods, are typically memory-bound.

Additionally, strong scaling is typically limited by fabric
bandwidth between compute nodes.

Total has addressed these challenges with Cerebras:

* Implemented 25-point stencil for the 3D wave equation with
source perturbation, achieved 228x speedup over A100.
Presented at SC22.

* Implemented finite volume flux computation for single phase

flow, achieved 204x speedup over A100. Presented at SC23.

« Additionally developed proprietary RTM (Reverse Time
Migration) code for internal use.

Papers: and

@?@webras
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ANL uses CS-2 to accelerate Monte

Carto particle transport kernel by
130x over A100

“The WSE is found to run 130 times faster
than a highly optimized CUDA version of the
kernel run on an NVIDIA A100 GPU -
significantly outpacing the expected
performance increase given the relative number
of transistors each architecture has”

Last week, PHYSOR publication
demonstrates 180x over A100.

Paper:

@cerebras

Efficient Algorithms for Monte Carlo Particle Transport on
AT Accelerator Hardware
John Tramm®*, Bryce Allen®’, Kazutomo Yoshii®, Andrew Siegel®, Leighton
Wilson®
% Argonne National Laboratory, 9700 S Cass Ave., Lemont, 60439, IL, USA

b University of Chicago, 5801 S. Ellis Ave., Chicago, 60637, IL, USA
¢Cerebras Systems Inc., 1237 E Arques Ave, Sunnyvale, 94085, CA, USA

Abstract

The recent trend in computing towards deep learning has resulted in the development
of a variety of highly innovative Al accelerator architectures. One such architecture,
the Cerebras Wafer-Scale Engine 2 (WSE2), features 40 GB of on-chip SRAM making
it an attractive platform for latency- or bandwidth-bound HPC simulation workloads.
In this study, we examine the feasibility of performing continuous energy Monte Carlo
(MC) particle transport by porting a key kernel from the MC transport algorithm
to Cerebras” CSL programming model. We then optimize the kernel and experiment
with several novel algorithms for decomposing data structures across the WSE2's
2D network grid of approximately 750,000 user-programmable distributed memory
compute cores and for flowing particles (tasks) through the WSE2's network for
processing. New algorithms for minimizing communication costs and for handling
load balancing are developed and tested. The WSE2 is found to run 130 times
faster than a highly optimized CUDA version of the kernel run on an NVIDIA A100
GPU

number of transistors each architecture has.

significantly outpacing the expected performance increase given the relative
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ANL uses CS-2 to accelerate Monte Carto particle transport kernel
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J. Tramm et al., Efficient algorithms for Monte Carlo particle transport on Al accelerator hardware, Commun. Comput. Phys. (2024).
J. Tramm et al., Monte Carlo with single-cycle latency, PHYSOR (2024).

@cerebras
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CS-2 Accelerates molecular dynamics for metallic alloys
179x faster than Frontier

“Measured performance and power efficiency of

WSE, GPU, and CPU systems on 800,000-atom Fast Molecular Dynamics on a Wafer-Scale System
SImUIatlonS' WSE used FP32 preCISIon Whl/e GPU Kylee Santos*, Stan Moore, Tomas Oppelstrup*, Amirali Sharifian*, Ilya Sharapov*, Aidan Thompson',

and CPU used FP64 preCISIon. (a) A Single WSE Delyan Z Kalchev*, Danny Perez®, Scott Pakin®, Edgar A. Leon*, James H Laros III7,

Michael James*, and Sivasankaran Rajamanickamlr

wafer results in 179x and 55x speedup “Cerebras Systems, Sunnyvale, CA

fSandia National Laboratories, Albuquerque, NM

Compar ed to Fr Ontier and CP U based iLa;wrence Livermor'e National Laboratory, Livermore, CA
simulations; (b) WSE provides one to two orders of B i
magnitude improvement in power efficiency over

both CPU and GPU systems; (c) Relative power  (omed ‘oo ondamtanding of e sysiens; dtving, break: .

:  throughs in material science, computational chemistry and several 1 OO S WSE

efﬁciency and speedup of WSE Compared to CPU  ofher felilsiHike Blophysicsiand drug destpn. Using the Cerebras

s Wafer-Scale Engine, we demonstrate an improvement in MD
a n d G P U S Ste m S 7 s iteration rate that enables a transformative capability for long-
y . 7 time simulations. This unlocks currently inaccessible timescales of
s slow microstructure transformation processes that are critical for
» understanding material behavior and function.
Our dataflow algorithm runs an Embedded Atom Method
11 (EAM) simulation at rates over 270,000 timesteps per second for
12 problems with up to 800k atoms. This corresponds to a nearly 180- -14
i1 fold speedup versus the Frontier GPU-based Exascale platform. 1 O S
1+ It simultaneously achieves an over 30-fold improvement in energy
15 efficiency. This demonstrated performance is unprecedented for | | |
s general-purpose processing cores. With further parallelization of
17 the algorithm, we project performance in excess of one million

- - . -2
Paper: Manuscript submitted to SC24  timesteps per second for 200,M0 atoms. This projected perfor- 10719m | 107%m

Time
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CS-2 accelerates molecular dynamics for metallic alloys

 Embedded Atom Model (EAM) is a molecular dynamics method with
an interatomic potential suited for modelling metallic systems

« Strong scaling applies more than one core per simulated atom
« Simulation timestep 1,000x faster than today’s SOTA
« 2 years on Exascale done in 1 day on a CS-2

* Investigate long time-scale system properties previously infeasible to
compute

« Larger molecular systems can scale to cluster of Cerebras nodes with
same timestep performance

» Extensions for biomolecules possible

@cerebras



Getting Access and Running




SDK Access and Next Steps

Get local access to the SDK simulator!

 Email developer@cerebras.net for access

Join the Cerebras Developer Community discourse.cerebras.net

e Forums at discourse.cerebras.net

View our public SDK examples GitHub repository
e See github.com/Cerebras/csl-examples

Run on ANL's systems with appliance mode

 See https://sdk.cerebras.net/appliance-mode

Questions? leighton.wilson@cerebras.net cerebras.net/developers/sdk-request

((Ceel'ebras © 2024 Cerebras Systems Inc. All Rights Reserved 71
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Roadmap
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Optimized Models in Q2 2024: LLM Focus

Model type Model architecture Model examples

Decoder-only  Sequential (e.g GPT) and parallel (e.g. GPT-J attention and * Llama/Llama2/Llama3
Transformers feed-forward blocks * Mistral7B
e Attention types: vanilla multi-head (GPT), MQA (Llama 7B), * GPT-2/GPT-3
GQA (Llama-2 70B) e GPT-J/GPT-NeoX
e Activation functions: relu, gelu (GPT), swiglu (Llama), etc  MPT
* Positional encodings: learned (GPT), fixed, RoPE (Llama) * Falcon
e Bloom
« JAIS

e StarCoder
e SantaCoder

e BTLM
Encoder-only * BERT-style  BERT Base/Large
Transformers  BERT SQuUAD, SST, MNLI, NER
Encoder-decoder * Vanilla transformer and variants * Transformer
Transformers e T5

((ceerebras © 2024 Cerebras Systems Inc. All Rights Reserved



Optimized Models in Q2 2024: LLM Focus (cont.)

Model type Model architecture Model examples

Multimodal * LLaVA-style: decoder-style, multiple image encoders, e LLavVA1.5
LLM backbones e AnyMAL
«  PalLl-style: encoder-decoder Eyes Wide Shut
Embeddings & Alignment °* BERT-style embedding models - DPR
« DPO

¢ Alignment with DPO with supported LLM backbones

@erebras © 2024 Cerebras Systems Inc. All Rights Reserved



GenAl Training & Fine-Tuning Capabilities through 2025

Extensive LLM support: Mistral, GenAl+ (MM + MoE) GenAl-Next

LLaMa, GPT, MPT, BERT, etc. * |Inputs: * All-to-all modalities
o +DNA * New GenAl architectures, e.g.

Mixture of Experts LLMs o +Video encoders e SSMs

* E.g. Mixtral 8x7B and 8x22B e Qutput Generation: e Mixing convolutions with GPT
o +Images architectures

Multimodal e Multi-modal MoEs

* Visual Question Answering

* Inputs:

o Text, code

o HQ images, charts, graphs
* Outputs:

o Text

((ceerebras © 2024 Cerebras Systems Inc. All Rights Reserved



Summary

* Now (Q2): Industry-leading performance on state-of-the-art LLMs, and early Multimodality VQA
* LLMs: Llama 3, Mistral, GPT3, MPT, JAIS, Falcon

* Multimodal: Visual Question Answering (input modalities of: text, images, charts, graphs, code)

* In July’24: Mixture of Experts & Multimodality
* MoE LLMs: Mixtral 8 x 7B, Mixtral 8 x 22B

* Multimodal: Fast pre-training of HQ image encoders & higher performance

* By EOY: Full optimization of MoE and Multimodality features
* Multimodal MoE models

* Multimodal with video and DNA input, and image generation output

((CEel'ebraS © 2024 Cerebras Systems Inc. All Rights Reserved



Q & A, Final remarks




Accelerate Scientific Discovery with Us at ALCF

 We're passionate about driving innovation: Our mission is to create the ultimate platform
for large-scale scientific Al and open science.

« Unleash your research potential: Experience unparalleled performance, effortless scaling,
and superior efficiency for faster breakthroughs.

« ALCF's CS-2 systems empower you: Discover the transformative impact they have on
open scientific research.

- Effortless access to cutting-edge Al: Tap into powerful features like expanded model size,
distributed compute, greater context length, and sparsity optimization.

Let's collaborate on groundbreaking science! Share your ambitious projects and ideas —
we're eager to support your success.

@cerebras



How to join ALCF

The ALCF welcomes open research projects seeking access to ANL production systems.

* Project teams are encouraged to submit their applications through the Director's Discretionary
Allocation Program (DDAP) page.

« Our DDAP program page provides information on how to apply for access to Cerebras
Systems and other production systems available.

» Rolling proposals are accepted from project teams at any time.
 Notification of proposal status is typically provided within 1-2 weeks of submission.

 The ALCF's DDAP program is committed to supporting innovative research initiatives and
empowering project teams to achieve their goals.

« DDAP program page --->

(cerebras © 2024 Gerebras Systems Inc. AllRights Reserved
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How to contact Cerebras?

* Email us at
* Sign up for our monthly newsletter at

» Join our Discord at Talk to researchers and our

. . I |
e Join our Discourse at ML/SDK Engineers here!
e LinkedIn -

o Twitter -

@cerebras
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https://twitter.com/CerebrasSystems
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