SOFTWARE STACK: TENSORFLOW PYTORCH POPLAR

June 11, 2024

Alexander Tsyplikhin

GRAPHCORE

AGENDA

- Architecture Refresher
- Software Ecosystem
- TensorFlow2/Keras
- PyTorch
- Poplar

ARCHITECTURE REFRESHER

IPU – ARCHITECTURED FOR AI

Massive parallelism with ultrafast memory access

Massively parallel MIMD. Designed for fine-grained, highperformance computing

PROVEN IPU ADVANTAGE SELECT CASE STUDIES ACROSS MANY INDUSTRIES & FIELDS

EXECUTION MODEL

OUTPUT FROM POPVISION GRAPH ANALYSER

GRAPHCORE

BOW-2000 IPU MACHINE

IU blade form factor delivering 1.4 PetaFLOPS AI Compute

BOW IPU-2000

BOW-2000 TOPOLIGY

4x Bow IPUs

- 1.4 PFLOP₁₆ compute
- 5,888 processor cores
- > 35,000 independent parallel threads

COMMUNICATIONS

Exchange Memory

- 3.6GB In-Processor Memory @ 260 TB/s
- 128GB Streaming Memory DRAM (up to 256GB)

IPU-Fabric managed by IPU-GW

- Host-Link 100GE to Poplar Server for standard data center networking
- IPU-Link 2D Torus for intra-POD64 communication
- GW-Link 2x 100Gbps Gateway-Links for rack-torack - flexible topology

BOW-POD64 TOPOLOGY

IPU DEVELOPER ECOSYSTEM

GRAPHCORE

GRAPHCORE SOFTWARE ECOSYSTEM

WORLD CLASS DEVELOPER RESOURCES FOR IPU USERS

WWW.GRAPHCORE.AI/DEVELOPER

GRAPHCORE **GRAPHCORE DOCUMENTS** Graphcore Documents Version: Latest Software Hardware **Getting Started** Search docs Documents Documents Background information and **Getting Started** quick-start guides for Documentation for the Documentation for installing Graphcloud and Pod and using IPU-Machines and Poplar SDK and other Software Documents Pod systems systems software Hardware Documents Technical Notes and White Papers Technical Notes and Examples and **Document Updates** Examples and Tutorials White Papers Tutorials The latest news about new Document Updates Technical notes and white documents and examples Tutorials and application papers on Graphcore examples for running on the Alphabetical List of All Documents technology IPU Graphcore License Agreements

Getting started with PyTorch for the IPU

Running a basic model for training and inference

Al Customer Engineer, Chris Bogdiukiewicz introduces PyTorch for the IPU. With PopTorch™ - a simple Python wrapper for PyTorch programs, developers can easily run models, directly on Graphcore IPUs with a few lines of extra code.

 $\textbf{Get the Code} \quad \rightarrow \quad$

In this video, Chris provides a quick demo on running a basic model for both training and inference using a MNIST based example.

Read the Guide \rightarrow

OPEN SOURCE

github.com/graphcore

- As part of our ethos to put power in the hands of AI developers, Graphcore open sourced in 2020
- PopLibs[™], PopART, PyTorch & TensorFlow for IPU fully open source and available on GitHub
- Our code is public and open for code contributions from the wider ML developer community

VIDEO + GITHUB TUTORIALS

A comprehensive set of online developer training materials and educational content

Running PyTorch on the IPU: NLP

Bulk Synchronous Parallel E

Learn how to create and run program PopLibs with our hands-on programm	ns using Poplar and ning tutorials.		
Programs and Variables	Using PopLibs		Writing Vertex Code
Profiling Output	Basic Machine Learning Example		Matrix-Vector Multiplication
Matrix-Vector Multiplication Optimisation	Simple PyTorch for the IPU	NEW	

Tutorial 1: programs and variables

Copy the file tut1 variables/start_here/tut1.cpp to your working directory and open it in an editor. The file contains the outline of a C++ program including some Poplar library headers and a namespace.

Graphs, variables and programs

All Poplar programs require a Graph object to construct the computation graph. Graphs are always created for a specific target (where the target is a description of the hardware being targeted, such as an IPU). To obtain the target we need to choose a device.

The tutorials use a simulated target by default, so will run on any machine even if it has no Graphcore hardware attached. On systems with accelerator hardware, the header file poplar/DeviceManager.hpp contains API calls to enumerate and return Device objects for the attached hardware.

Simulated devices are created with the IPUModel class, which models the functionality of an IPU on the host. The createDevice function creates a new virtual device to work with. Once we have this device we can create a Graph object to target it.

· Add the following code to the body of main :

// Create the IPU Model device IPUModel ipuModel: Device device = ipuModel.createDevice(); Target target = device.getTarget();

// Create the Graph object Graph graph(target):

Any program running on an IPU needs data to work on. These are defined as variables in the graph.

· Add the following code to create the first variable in the program:

Tutorial 5: a basic machine learning example

This tutorial contains a complete training program that performs a logistic regression on the MNIST data set, using gradient descent. The files for the demo are in tut5_ml. There are no coding steps in the tutorial. The task is to understand the code, build it and run it. You can build the code using the supplied makefile.

Before you can run the code you will need to run the get_mnist.sh script to download the MNIST data.

The program accepts an optional command line argument to make it use the IPU hardware instead of a simulated IPU.

As you would expect, training is significantly faster on the IPU hardware.

Copyright (c) 2018 Graphcore Ltd. All rights reserved.

RESOURCES CENTRE

graphcore.ai/resources

- Central source of research papers, white papers, videos, on-demand webinars and documentation
- Product resources for ML Engineers & IT / Infrastructure Managers now available

GRAPHCORE DEVELOPER ECOSYSTEM

СС

STANDARD ML FRAMEWORK SUPPORT

Develop models using standard high-level frameworks or port existing models

Platforms

GRAPHCORE SOFTWARE

СC

ENHANCED MODEL GARDEN

			0220					
Resources > Model Garden MODEL GARDEN	e the	GPS++ INFERE A hybrid GNN/Trans Property Prediction on the PCQM4Mv2 Graph Benchmark I	NCE sformer for Molecular inference using IPUs trained dataset. Winner of the Open .arge-Scale Challenge.	DISTRIBUTED K TRAINING Knowledge graph em prediction training on the WikiK390Mv2 dat Graph Benchmark Lar	GE - TRANSE (256) bedding (KGE) for link- n IPUs using Poplar with caset. Winner of the Open rge-Scale Challenge.	GPT-J 6B FINE-TUN GPT-J 6B fine-tuned using t dataset leveraging the Hug Transformer library.	ING he GLUE MNLI ging Face	BEF Hugg fine-
	ory	Try on Paperspa	ce 🖸 View Repository	O Vie	w Repository	O View Rep	ository	0
LIBRARY	Se	earch:						
Туре:								
Paperspace	S' IN	TABLE DIFFUSION	N TEXT-TO-	STABLE DIFFUSIO	DN IMAGE-TO- CE	STABLE DIFFUSIO	N INPAINTING	
Benchmarked	AI	e popular latent diffusion with support for text-to-ir	model for generative mage on IPUs using	Al with support for image	on model for generative -to-image on IPUs using	The popular latent diffusion Al with support for inpainti	n modelfor generative ng on IPUs using	
	Hu	igging Face Optimum.		Hugging Face Optimum.		Hugging Face Optimum.		
Framework:		Try on Paperspace	O View Repository	O Try on Paperspace	O View Repository	Try on Paperspace	View Repository	
TensorFlow 1 TensorFlow 2 Hugging Face PopART	G A l Pr da La	PS++ TRAINING hybrid GNN/Transformer I operty Prediction using IP taset. Winner of the Oper rge-Scale Challenge.	ior training Molecular Us on the PCQM4Mv2 I Graph Benchmark	GPS++ INFERENC A hybrid GNN/Transforme Prediction inference using PCQM4Mv2 dataset. Winr Benchmark Large-Scale C	E er for Molecular Property g IPUs trained on the ner of the Open Graph Shallenge.	DISTRIBUTED KGE (256) TRAINING Knowledge graph embedd prediction training on IPUs WikiKG90Mv2 dataset. Win Benchmark Large-Scale Ch	I - TRANSE ing (KGE) for link- using Poplar with the ner of the Open Graph wilence.	
PaddlePaddle						benefinark Large-Scale of	anongo.	
Category:	(Try on Paperspace	O View Repository	Try on Paperspace	O View Repository	O View Re	epository	
Natural Language Processing Computer Vision	D (2	ISTRIBUTED KGE 256) INFERENCE	- TRANSE	DISTRIBUTED KG (256) TRAINING	E - TRANSE	GPT-J 6B FINE-TU GPT-J 6B fine-tuned using t	NING	
Speech Processing GNN Multimodal Al for Simulation	Kn pr Wi Be	iowledge graph embeddii ediction inference on IPU: ikiKG90Mv2 dataset. Winr inchmark Large-Scale Cha	ng (KGE) for link- s using Poplar with the ler of the Open Graph illenge.	Knowledge graph embed prediction training on IPU WikiKG90Mv2 dataset. Wi Benchmark Large-Scale C	ding (KGE) for link- s using PyTorch with the inner of the Open Graph challenge.	leveraging the Hugging Fa	ce Transformer library.	
Recommender		O View Re	pository	O View	Repository	O View R	epository	
Probabilistic Modelling								
Reinforcement Learning	D	ISTILBERT TRAIN	IING	MAE TRAINING		FROZEN IN TIME	TRAINING	
	Di	stilBERT is a small, fast, ch	eap and light	Implementation of MAE c	omputer vision model in	Implementation of Frozen i	n Time on the IPU in	

PUBLIC ACCESS TO WIDE VARIETY OF MODELS, READY TO RUN ON IPU

NEW FILTER/SEARCH CAPABILITY

DIRECT ACCESS TO GITHUB

https://www.graphcore.ai/resources/model-garden

MODEL GARDEN COVERAGE

20

POPVISION®

INDUSTRY LEADING AI APPLICATION PERFORMANCE ANALYSIS TOOLS

Introduced in Q2 2020 our PopVision analysis tools provide detailed observability of IPU applications

- Poplar Graph Analyser allows visual inspection of IPU execution down to the individual tile level
- Poplar System Analyser gives users the ability to view host side application and IPU interaction
- Both tools extend debug information back up into Tensorflow and Pytorch for developers

SUPPORTED PLATFORMS

POPVISION TOOLS

	da sko	ada ada
contractional bog contractional policy agriculty reamplies we Live Harlebler Her Alexan Live Harl more relevant Work of the second second second second second Work of the second seco	noupromatalain; menjawaki dowazini ingueba doji hopi n Inferi Verbia: Verbi Detmanes	25540 × 25648
Arth Science Oracles (Science) popular popular popular Partial	Ige differences Market States and States and States Market States IS 46 13 10 Take	ato ke

IPU MEMORY ANALYSIS

Capture memory information from your ML models when executed on IPUs. Inspect variable placement, size and liveness throughout the execution.

EXECUTION TRACE REPORT

View the output of instrumenting a Poplar program, capturing cycle counts for each step. See execution statistics, tile balance, cycle proportions and compute-set details.

** t	1					
52.48						
		. h.	apap	m.h.	-net	
10 10	10 10 40 M	-	10 10 10 10	ni 10 10	140 ER 160	10
boladed/hogan-bbp litere (seurch) - Dirit	etansale (servis), VCow25/v	ematuritors 200	Cone 3x.9Consider			
Balacied Program Dep Hanne (seurce) Dis St Hanne (seuper), On St Alweys Line Vanabies	etaniste isanda) (Kinsch) diaoste isanda) (Kinsch) hat Alexys List Variables	revalution 200 mediation 100/ NetSizes	Cone, 3x.)/Convalue) Kone, (% (/Convalue) Ojcie Colenatori			
Belauted Trogram Disp latere Issuranty - Circli Istere Issuranty - Circli Istere Issuranty - Circli Adepts Linc Vanabits	etheniadie paerskiet (KCorectifish etheniadie paerskiet (KCorectifish Port Alexan Line Yerrettien	renaturion 100, senaturion 100, Nertices	Conc. 3c3/Consider) Conc. (In DOmaine) Cyclit Difference			
Bolocked Thogsam Obey Name Source) Circli Name Isorget) Or S Always Linc Variables	effansade komstel, NCOnsolby Bassura Innisid, NCOnsolby Port Alargy Line for states	metation XIG metation XIG Netting	Conc.26.0Consulted Room, 36.0Consulted Optic Defendent Source: All Tiles II	Target All	Show differences betwee	
Belevited Program Disp Name (sources) - Gint Name (sources) - Gint Name (source) - Gint Alexys Line Vandoles - Gint - Sources - Up (solid) Tablel	effansade Joan (al.) (Könschly alassus Joan (al.) (Könschly Net Alassy Lise (ar stoles	metalion 165 metalion 165 Sertices	Kline Jal/Gonaled Rone, Jal/Gonaled Gjole Difmern Gonto AFFilm i 200 mi	Tarpet All	Show differences betwee	01
Belevited Program Disp Name (Korpet) On D Alexys Line Variables Unroble Datal Instal	etantain koerda) UCowddyb dianoaru koerdd UCowddyb Nor Alexan Llar Yanaba mdDicarwalytian Mallins	mentation 105 mentation 105 Nertices	Conv. Jac VConvestered Alconv. Jac VConvestered Optimizero Sconton: All Tilline II Scotton: All Tilline II Scotton: Billing	Terpe M B	an atore a	
Bolicited Program Dep Name Search Oct N Hame Search Oct N Anters Line Variables Chromosome Unionis Takat Immessar convolt, Sici Immessar convolt, Sici	etansata samuta Nicionatika danara Jamida Niconatika Intr Alexon Line Senatore militatemetikaten Mellon militatemetikaten Mellon	mentation 185 mentation 186 Nettices	Cone 26 OConsulted Cone, to (Aconsulted Optic Defendes Source All Tites II 860 HB 200 HB	Tarpet All	Since differences between 6 460 Ve (1) 8 11 3 Ve (2)	
Bolieshol Thoganan Shap Jalane Isaurah (Dirit) Janes Isaurah (Dirit) Alexys Line Vanables Colorador Datal Imensage convolt, SIG Imensage convolt, SIG Imensage convolt, SIG Imensage convolt, SIG	etanciar sonrala (1020-004) diseora inmedia (100-004) hor Alaron Line fariatori material and the fariatori material and the fallen- material and the fallen-	mentation 185 mentation 186 Nettices	Cline, Jal XConsuler (Kner, Jal Wonsules) Optie Edimetris Source All Film II 805 40 503 40 503 40 503 40	Tarpet M B	Show differences between 8 400 kg ff 8 13,3 465 8 3,2 465	
Balacted Treguer Step Jame Ingent Orth Jame Torget Orth James Torget Orth Alexes Line Vandelen Charles Total resensation of the Constitution of Total resensation of the Constitution of the Constitution of the Constitution	ebensite soerstel (NCanotike ebenste innerde), NCanotike Per Alegen Lite Variable m/20termelsten Militeren en 20termelsten Militeren ebenstel Statister Schapente	mentation 100 mentation 100 Nertices	Conc./M/Consulters Conc. /M/Consulters Optic Differenties Sectors ATTENS 1 805 490 005 140 150 140 150 140	Torget All 6 86.8 k 95.4 k 160 k	1000 diffuse cas based 1000 diffuse cas based 1000 cas based	
Belaketol Megawe Dag Barre Isanzel - Dath Barre Isanzel - Dath Barre Isanzel - Dath Alegen Line Vandelen - There are a Vandele - There are a - There are a second - Dath - Second - Dath - There are a second - Dath - Dath	elevante koerdel, Niconschule Benorte Immedia, Niconschule Nor-Alexan Line Services en 20temendiation Mattere en 20temendiation Mattere Mattere Jackson Mattere Mattere Jackson Mattere	ematukion 1855 socialistion kääj Kerstons	Cline, Jal JConsulted Const, Jal Hornsolve Optic Editorial Source: All Film: 8 805 498 805 498 815 188 815 188 815 188 815 188	Torpet. MI 6 86.9 M 99.4 4 86.0 M 100 M 25 M	Show differences between # # # 460.146 # 10.346.8 # 10.246.8 # 10.246.8 # 10.246.8 # 10.246.8 # 10.246.8	

REPORT COMPARISONS

Open two reports at once to compare their memory, execution, liveness and operations. Visualise where efficiencies can be made with different model parameters.

HOST EXECUTION ANALYSIS

Understand the execution of IPU-targeted software on your host system processors. Identify any bottlenecks between CPUs and IPUs across a visual interactive timeline.

GRAPH DATA

Plot graph data of any numerical data points from the host or IPU processor systems, such as board temperature, power consumption and IPU utilisation.

open file	
local nervola	
Enter your usemaner and the host to con	ned to.
Upertrame.	
in the second se	
erd licebrame:	
(puberfield	
25 21	
126	
1766. 1877	
	Control Control
	Carter Carter

LOCAL + REMOTE REPORTS

Ability to open reports either on your local machine, or remotely on the host machine. The Graph Analyser also supports local and remote report access.

POPVISION PERFORMANCE ANALYSER

Navigation 🥥 🔍 65787% 🔍 « » <

Utilization/memory map of every tile/every IPU

TF2/KERAS ON IPU

KERAS ON IPU

- IPU optimized Keras Model and Sequential are available for the IPU. These have the following features:
 - * On-device training loop for reduction of communication overhead.
 - * Gradient accumulation for simulating larger batch sizes.
 - * Automatic data-parallelisation of the model when placed on a multi-IPU device.

✿ gpu_cnn_keras.py ↔ ipu_cnn_keras.py tf_keras	
and the second se	import tensorflow as tf
Crac ras.layers import *	from tensorflow.keras.layers import *
ICIAS ////////////////////////////////////	+ from tensorflow.python import ipu
	+ cfg = ipu.config.IPUConfig()
	+ cfg.auto_select_ipus = 1
	+ cfg.configure_ipu_system()
	+ with ipu.ipu_strategy.iPUStrategy().scope():
(x_train, y_train), (x_test, y_test) = tf.keras.datasets.citar10.load_data()	(x_train, y_train), (x_test, y_test) = tr.keras.datasets.citar10.load_data()
$x_{train} = x_{train.astype}(1000132) / 255.0$	$x_{train} = x_{train.astype}(troats2) / 255.0$
y_train = tf.keras.utits.to_categoricat(y_train, 10)	y_train = tf.keras.utits.to_categoricat(y_train, 10)
ds_train = tr.data.bataset.trom_tensor_stices((x_train, y_train)).batch(64, drop_remainde	ds_train = tf.data.Dataset.from_tensor_stices((x_train, y_train)).batch(64, drop_rema
<pre>model = tf.keras.Sequential([</pre>	<pre>model = tf.keras.Sequential([</pre>
<pre>Conv2D(32, (3, 3), padding='same', input_shape=x_train.shape[1:]),</pre>	<pre>Conv2D(32, (3, 3), padding='same', input_shape=x_train.shape[1:]),</pre>
Activation('relu'),	Activation('relu'),
Conv2D(32, (3, 3)),	Conv2D(32, (3, 3)),
Activation('relu'),	Activation('relu'),
<pre>MaxPooling2D(pool_size=(2, 2)),</pre>	<pre>MaxPooling2D(pool_size=(2, 2)),</pre>
Dropout(0.25),	Dropout(0.25),
Conv2D(64, (3, 3), padding='same'),	Conv2D(64, (3, 3), padding='same'),
Activation('relu'),	Activation('relu'),
Conv2D(32, (3, 3)),	Conv2D(32, (3, 3)),
Activation('relu'),	Activation('relu'),
<pre>MaxPooling2D(pool_size=(2, 2)),</pre>	<pre>MaxPooling2D(pool_size=(2, 2)),</pre>
Dropout(0.25),	Dropout(0.25),
Flatten(),	Flatten(),
Dense(512),	Dense(512),
Activation('relu'),	Activation('relu'),
Dropout(0.5),	Dropout(0.5),
Dense(10),	Dense(10),
Activation('softmax')	Activation('softmax')
1)	
model compile(loss='categorical crossentrony'	model compile(loss='categorical crossentropy'
ontimizer-tf ontimizers SCD(learning rate-0 016)	optimizer-tf optimizers SGD(learning rate-0 016)
metrics=['accuracy'])	metrics=['accuracy'])
meetics-[accuracy]/	metrics-[accuracy]/
<pre>model.fit(ds_train, epochs=40)</pre>	<pre>model.fit(ds_train, epochs=40)</pre>

.

TF2/KERAS TUTORIALS

github.com/graphcore/examples/tree/master/tutorials/tutorials/tensorflow2

INTRO TO POPTORCH

GRAPHCORE

WHAT IS POPTORCH?

	_, ind = corch.max(predictions, i)		_, ind = corch.max(predictions, i)
	<pre># provide labels only for samples, where prediction is available (during the training, no ions.size()[0]:]</pre>		<pre># provide labels only for samples, where prediction is available (during the training, not labels = labels[-predictions.size()[0]:]</pre>
	PyTorch ^{ch.eq(ind, labels)).item() / labels.size(GPU}		<pre>accuracy = torch.sum(torch.eq(ind, labels)).item() / labels.si IPU I00.0 return accuracy</pre>
	ifname == 'main':	i	fname == 'main':
	<pre>parser = argparse.ArgumentParser(description='MNIST training in PopTorch')</pre>		<pre>parser = argparse.ArgumentParser(description='MNIST training in PopTorch')</pre>
	<pre>parser.add_argument('batch-size', type=int, default=8, help='batch size for training (default=1)</pre>		<pre>parser.add_argument('batch-size', type=int, default=8, help='batch size for training (default=1)</pre>
	<pre>parser.add_argument('test-batch-size', type=int, default=8, help='batch size for testing</pre>		<pre>parser.add_argument('test-batch-size', type=int, default=8, help='batch size for testing</pre>
	<pre>parser.add_argument('epochs', type=int, default=10, help='number of epochs to train (de</pre>		<pre>parser.add_argument('epochs', type=int, default=10, help='number of epochs to train (definition)</pre>
	parser.add_argument('lr', type=float, default=0.05, help='learning rate (default: 0.05)		parser.add_argument('lr', type=float, default=0.05, help='learning rate (default: 0.05)'
		+	parser.add_argument('device-iterations', type=int, detault=50, help='device iterations')
	args = parser.parse_args()		args – parser parse_args()
-	<pre>training_data = torch.utils.data.DataLoader(</pre>	+	<pre>opts = poptorch.Options().deviceIterations(args.device_iterations)</pre>
	///////////////////////////////////////	+	<pre>training_data = poptorch.DataLoader(opts,</pre>
	torchvision.datasets.MNIST('mnist_data/', train=True, download=True,		torchvision.datasets.MNIST('mnist_data/', train=True, download=True, trans
	batch_size=args.batch_size, shuffle=irue, drop_last=irue)		batch_size=args.batch_size, shuffle=Irue, drop_last=Irue)
_	torchyision_datasets_MNIST('mnist_data/'train=Falsedownload=True	Ŧ	torchyision_datasets_MNIST('mnist_data/'train=Ealsedownload=Truetrain
	<pre>model = Network()</pre>		<pre>model = Network()</pre>
	<pre>training_model = TrainingModelWithLoss(model)</pre>		<pre>training_model = TrainingModelWithLoss(model)</pre>
	<pre>optimizer=optim.SGD(model.parameters(), lr=args.lr)</pre>		<pre>optimizer=optim.SGD(model.parameters(), lr=args.lr)</pre>
		+	<pre>training_model = poptorch.trainingModel(training_model, opts, optimizer=optimizer)</pre>
		+	<pre>inference_model = poptorch.inferenceModel(model)</pre>
	# Run training		# Run training
	for in range(args.epochs):		for in range(args.epochs):
	for data, labels in training data:		for data, labels in training data:
	preds, losses = training_model(data, labels)		<pre>preds, losses = training_model(data, labels)</pre>
—	<pre>optimizer.zero_grad()</pre>	+	
-	losses.backward()	+	# Detach the training model so that the same IPU could be used for validation
—	<pre>optimizer.step()</pre>	+	<pre>training_model.detachFromDevice()</pre>
	# Pup validation		# Pup validation
	* run vacuation		= 0.0
	with torch.no grad():		with torch.no grad():
	for data, labels in test_data:		for data, labels in test_data:
—	<pre>output = model(data)</pre>	+	<pre>output = inference_model(data)</pre>
	<pre>sum_acc += accuracy(output, labels)</pre>		<pre>sum_acc += accuracy(output, labels)</pre>
	<pre>print("Accuracy on test set: {:0.2f}%".format(sum_acc / len(test_data)))</pre>		<pre>print("Accuracy on test set: {:0.2f}%".format(sum_acc / len(test_data)))</pre>

POPTORCH TUTORIALS

github.com/graphcore/examples/tree/master/tutorials/tutorials/pytorch

UNDER THE HOOD: BSP

BULK SYNCHRONOUS PARALLEL (BSP)

BSP software bridging model – massively parallel computing with no concurrency hazards

3 phases: compute, sync, exchange

Easy to program - no live-locks or dead-locks

Widely-used in parallel computing - Google, FB, ...

First use of BSP inside a parallel processor

COMPUTATIONAL GRAPH

TIME

GRAPH EXECUTION MODEL COMMUNICATION COMPUTE SYNC COMMUNICATION COMPUTE SYNC COMMUNICATION

POPLAR FRAMEWORK

WHAT IS POPLAR?

- Parallel programming framework that targets the IPU
- Simple but powerful programming model
- Close to the metal
- General purpose, extensible

POPLAR FRAMEWORK

1. Graphs, Variables & Vertices

- 2. Compute Sets & Execution
- 3. Host IPU Execution Model

THE POPLAR GRAPH

Data is stored in the graph in fixed size multi-dimensional tensors.

VARIABLES

VERTICES

A **vertex** is a specific piece of work to be carried out.

The edges determine which variable elements are processed by the vertex. A vertex can connect to a single element or a range of elements.

3.13

0.23

VERTICES

Codelet A

Input<float> x; Input<Vector<float>> y; Output<float> z;

*z = x + sum(y);

Each vertex is associated with a **codelet**.

3.13

0.23

VERTICES

Many vertices are needed to fully utilize the device

POPLAR FRAMEWORK

- 1. Graphs, Variables & Vertices
- 2. Compute Sets & Execution
- 3. Host IPU Execution Model

COMPUTE SETS

Compute sets specify sets of vertices to execute in parallel

Poplar verifies the compute set is free of data races

A compute sets execute in 3 steps:

- **1. Exchange** Transfer inputs
- 2. Compute Run vertices in parallel
- **3. Exchange** Transfer outputs

Exchange code is generated by Poplar

Exchange is required when a vertex in a compute set needs to read or write data which is stored on another tile's memory.

For each compute set, each tile will have a number of vertices to execute.

All tiles start by **sync**ing.

The tiles then move to **exchange:** Required vertex input data is copied between memory.

Tiles will move to **compute** when they have finished exchange.

During compute vertices will read from and write to local tile memory.

Each tile processor has several independent hardware threads (workers) to execute code.

Once exchange is complete, a hardware scheduler (**supervisor**) dispatches vertices onto the workers to run.

The tiles will run all vertices and then sync.

SUMMARY

A graph is made up of:

- Data (variables in the graph)
- Compute tasks (vertices)
- Edges that connect them

Vertices:

- Are associated to a codelet (code)
- Run on a single tile

Compute sets:

- Specify sets of vertices to execute in parallel
- Are executed in 3 steps: Exchange inputs, Compute, Exchange outputs

Control program:

• Specifies the order of operations

The program resides on the chip:

• The host takes care of compilation and of the data stream preparation

THE HOST PROGRAM

Host programs use the poplar library. #include <poplar/Engine.hpp> Codelets are loaded into using namespace poplar; the graph. using namespace poplar::program; The **Graph** class is used to build up ... the computation Graph graph(target); graph. graph.addCodelets("my-codelets.cpp"); Control Program prog1, prog2; programs are The **Engine** class built up out of constructMyGraph(graph, &prog1, &prog2); represents a fully instances of compiled program Engine eng(device, graph, {prog1, prog2}); the **Program** ready to run on class. hardware. eng.run(0);

CODELET DEFINITIONS

The fields of the vertex specify its inputs, outputs and internal data.

	Each codelet is defined as a C++ class that inherits from the
<pre>class AdderVertex : public Vertex { public: Input<float> x; Input<float> y; Output<float> z;</float></float></float></pre>	Vertex class.
<pre>float bias; bool compute() { *z = x + y + bias; return true; }</pre>	The compute method specifies the vertex execution behaviour.

BUILDING THE COMPUTE GRAPH

CREATING CONTROL PROGRAMS

```
Graph g(device);
g.addCodelets("codelets.cpp");
```

```
•••
```

```
auto prog = Sequence();
prog.add(Execute(cs1));
prog.add(Execute(cs2));
```


CREATING THE ENGINE

SUMMARY

- Poplar lets you define your own operations by writing codelets
- Poplar generates "glue code" required to synchronize / exchange data
- Frees you to concentrate on parallel algorithm design

LIBRARIES = MODULAR GRAPH BUILDING

POPLIBSTM

C / C++ and Python language bindings							
poputil	popops	poplin	poprandom	popnn			
Utility functions for building graphs	Pointwise and reduction operators	Matrix multiply and convolution functions	Random number generation	Neural network functions (activation fns, pooling, loss)			
POPLAR®							

APPLY AND JOIN TODAY

Argonne Leadership Computing Facility

 \equiv

HOME / SCIENCE

Director's Discretionary Allocation Program

The ALCF Director's Discretionary program provides "start up" awards to researchers working to achieve computational readiness for for a major allocation award.

Molecular dynamics simulations based on machine learning help scientists learn about the movement of the boundary between ice grains (yellow/green/cyan) and the stacking disorder that occurs when hexagonal (orange) and cubic (blue) pieces of ice freeze together. Image: Henry Chan and Subramanian Sankaranarayanan, Argonne National Laboratory

Apply at <u>alcf.anl.gov/science/directors-</u> <u>discretionary-allocation-program</u>

general ~

charlieb 6:05 AM

🎉 Pleased to share with you all some new work from the Graphcore research team! 🎉

Our paper *Unit Scaling* introduces a new method for low-precision number formats, making FP16 We've managed to train BERT in these formats for the first time without loss scaling.

- You can find our blog post here: https://www.graphcore.ai/posts/simple-fp16-and-fp8-trainir
- Paperspace notebook (try it yourself!): https://ipu.dev/qXfm2a
- Arxiv paper: https://arxiv.org/abs/2303.11257

(& we were also featured on Davis Blalock's popular ML newsletter this week) (edited)

graphcore.ai

Simple FP16 and FP8 training with unit scaling

Unit Scaling is a new low-precision machine learning method able to train language models in FP16 and FP8 without loss scaling. (69 kB) \star

🗎 arXiv.org

Unit Scaling: Out-of-the-Box Low-Precision Training

We present unit scaling, a paradigm for designing deep learning models that simplifies the use of low-precision number formats. Training in FP16 or the recently proposed FP8 formats offers substantial efficiency gains, but can lack sufficient range for out-of-the-box training. Unit scaling addresses this by introducing a principled approach to model numerics: seeking unit variance of Show more

🔥 8 🎉 8 💡 7 🧩 1 👍 1 🙂 1 😅

Join at graphcore.ai/join-community

	Tuesday, 11 June	
1:00 PM → 1:15 PM	Introduction	③ 15m
1:15 PM → 1:45 PM	Graphcore BowPod64 Hardware	() 30m
1:45 PM → 2:30 PM	Software Stack: TensorFlow, PyTorch, and Poplar	() 45m
2:30 PM → 2:45 PM	Break	() 15m
2:45 PM → 3:15 PM	Porting applications with Poplar	③ 30m
3:15 PM → 4:00 PM	How to use Bow Pod64@ ALCF	③ 45m
	Wednesday, 12 June	
1:00 PM → 1:45 PM	Deep Dive on Graph neural networks and Large Language Models	Q.45m
1:45 DM > 2:15 DM		0 +0111
	Profiling with PonVision	() 20m
2:15 PM	Profiling with PopVision	③ 30m
2:15 PM → 2:30 PM	Profiling with PopVision Break	(§ 30m) (§ 15m)
 2:15 PM → 2:30 PM 2:30 PM → 3:15 PM 	Profiling with PopVision Break Hands-on session	(\$ 30m) (\$ 15m) (\$ 45m)

THANK YOU

Alexander Tsyplikhin alext@graphcore.ai

