
CONFIDENTAL - ONLY SHARED UNDER NDACONFIDENTAL - ONLY SHARED UNDER NDA

1

PORTING
APPLICATIONS

June 11, 2024
Alexander Tsyplikhin

GRAPHCORE

2

AGENDA

• Porting TensorFlow2/Keras
• Porting a Keras script, leverage loop on device, replicate and run data-parallel, pipeline

• Porting PyTorch
• PopTorch example, DataLoader, options to optimize performance

STANDARD ML FRAMEWORK SUPPORT
Develop models using standard high-level frameworks or port existing models

IPU-
Processor
Platforms

POPLAR®

Easy port of
high-level
framework

models

Existing models on
alternative platforms

4

POPLAR® SDK

POPVISION TOOLS

DEVELOPER ECOSYSTEM

TUTORIALS

CODE EXAMPLES

VIDEOS

NATIVE IPU CODERS PROGRAM

GRAPH ENGINE

GC DEVICE ACCESS LAYER

PCIe DRIVERIPUOF DRIVER

GRAPH COMPILER

POPLIBS GCL POPLAR

POPLAR®

DRIVERS

FW BACKENDS

FRAMEWORKS

GRAPH ANALYZER

SYSTEM ANALYZER

PARTITIONER POPIR POPIT

INFERENCE DEPLOYMENT
TOOLKIT

FRONTENDS

DEBUGGER

DEVELOPMENT ENVIRONMENT

APPS PORTFOLIO

DOCUMENTATION

ML APPLICATIONS

IMAGE CLASSIFICATION/CNNS

OBJECT DETECTION

LARGE MODELS

MLPERF

CONDITIONAL SPARSITY

GNNS

NLP/TRANSFORMERS

JUPYTER NOTEBOOKS

SYSTEM SOFTWARE

POPLAR

V-IPU

SYSTEM MONITORING

JOB DEPLOYMENT

K8S SLURM

PROMETHEUS
GRAFANA

XLA POPART+ POPDIST

GRAPHCORE SOFTWARE MATURITY

HALOONNX

GRAPHCORE

5

VIDEO + GITHUB TUTORIALS

Getting started with PyTorch for the IPU Evaluating Batch Sizes on IPUs

Bulk Synchronous Parallel Execution Running PyTorch on the IPU: NLP

Getting started with PopVision Fundamental of Poplar

Getting started with PopART Running TensorFlow on the IPU

A comprehensive set of online developer training materials and educational content

LSTM Encoder Decoder

6

TF2/KERAS ON IPU

LSTM Encoder Decoder

7

KERAS ON IPU

IPU optimized Keras Model and Sequential with
the following features:

• On-device training loop for reduction of
communication overhead.

• Gradient accumulation for simulating larger
batch sizes.

• Automatic data-parallelisation of the model
when placed on a multi-IPU device.

GPU IPUKeras

9

TF2/KERAS TUTORIALS

Sample commands: https://bit.ly/ALCF2406

Continued in the repositories below (follow the READMEs)

github.com/graphcore/examples/tree/master/tutorials/tutorials/tensorflow2/keras

https://bit.ly/ALCF2406
https://github.com/graphcore/examples/tree/master/tutorials/tutorials/tensorflow2/keras

INTRO TO POPTORCH

WHAT IS POPTORCH?

11

PopART

G
RA

PH
 C

O
M

PI
LE

R

G
RA

PH
 R

U
N

 T
IM

E

Poplar
compute

graph

PopTorch

main.py

12

WHAT IS POPTORCH?
• PopTorch is a set of extensions for PyTorch to enable PyTorch models to run on

Graphcore's IPU hardware.

• PopTorch supports both inference and training. To run a model on the IPU you wrap
your existing PyTorch model in either a PopTorch inference wrapper or a PopTorch
training wrapper.

• You can provide further annotations to partition the model across multiple IPUs.
Using the user-provided annotations, PopTorch will use PopART to parallelise the
model over the given number of IPUs.

• Additional parallelism can be expressed via a replication factor which enables you to
data-parallelise the model over more IPUs.

https://docs.graphcore.ai/projects/popart-user-guide/en/latest/intro.html

GETTING STARTED: TRAINING A MODEL

14

15

1. Import packages

PopTorch is a separate package from PyTorch, and must be imported.

2. Load dataset using torchvision.datasets and poptorch.DataLoader

In order to make data loading easier and more efficient, PopTorch offers an extension of
torch.utils.data.DataLoader class:
poptorch.DataLoader class is specialised for the way the underlying PopART
framework handles batching of data.

3. Define model and loss function using torch API

The only difference here from pure PyTorch is the loss computation, which has to be part
of the forward function. This is to ensure the loss is computed on the IPU and not on the
CPU, and to give us as much flexibility as possible when designing more complex loss
functions.

TRAINING A MODEL

16

4. Prepare training

Instantiate compilation and execution options, these are used by PopTorch’s wrappers
such as poptorch.DataLoader and poptorch.trainingModel.

5. Train the model

Define the optimizer using PyTorch’s API.

Use poptorch.trainingModel wrapper, to wrap your PyTorch model. This wrapper will
trigger the compilation of our model, using TorchScript, and manage its translation to a
program the IPU can run. Then run your training loop.

TRAINING A MODEL

GPU IPUPyTorch

18

POPTORCH TUTORIALS

Continued in the repositories below (follow the READMEs)

github.com/graphcore/examples/tree/master/tutorials/tutorials/pytorch/basics

github.com/graphcore/examples/tree/master/tutorials/tutorials/pytorch/mixed_precision

github.com/graphcore/examples/tree/master/tutorials/tutorials/pytorch/efficient_data_loading

github.com/graphcore/examples/tree/master/tutorials/tutorials/pytorch/pipelining

https://github.com/graphcore/examples/tree/master/tutorials/tutorials/pytorch/basics
https://github.com/graphcore/examples/tree/master/tutorials/tutorials/pytorch/mixed_precision
https://github.com/graphcore/examples/tree/master/tutorials/tutorials/pytorch/efficient_data_loading
https://github.com/graphcore/examples/tree/master/tutorials/tutorials/pytorch/pipelining

POPTORCH.OPTIONS

19

• The compilation and execution on the IPU can be controlled using poptorch.Options

• Full list of options available here: https://docs.graphcore.ai/projects/poptorch-user-
guide/en/latest/overview.html#options

• Some examples:
 (i) deviceIterations
 This option specifies the number of batches that is prepared by the host (CPU) for

the IPU. The higher this number, the less the IPU has to interact with the CPU, for
example to request and wait for data, so that the IPU can loop faster. However,
the user will have to wait for the IPU to go over all the iterations before getting
the results back. The maximum is the total number of batches in your dataset,
and the default value is 1.

 (ii) replicationFactor
 This is the number of replicas of a model. We use replicas as an implementation

of data parallelism. To achieve the same behavior in pure PyTorch, you'd wrap
your model with torch.nn.DataParallel, but with PopTorch, this is an option.

https://docs.graphcore.ai/projects/poptorch-user-guide/en/latest/overview.html
https://docs.graphcore.ai/projects/poptorch-user-guide/en/latest/overview.html

LSTM Encoder Decoder

20

USEFUL ENV VARIABLES

21

Logging messages can be generated when your program runs. This is controlled by the environment
variables described below. For more detailed information see the docs:
https://docs.graphcore.ai/projects/poplar-user-guide/en/latest/env-vars.html

POPLAR_LOG_LEVEL: Enable logging for Poplar

POPLAR_LOG_DEST: Specify the destination for Poplar logging (“stdout”, “stderr” or a file name)

“OFF” No logging information. The default.

“ERR” Only error conditions will be reported.

“WARN” Warnings when, for example, the software cannot achieve what was requested (for example, if the convolution planner can’t keep to the
memory budget, or Poplar has determined that the model won’t fit in memory but the debug.allowOutOfMemory option is enabled).

“INFO” Very high level information, such as PopLibs function calls.

“DEBUG” Useful per-graph information.

“TRACE” The most verbose level. All useful per-tile information.

LOGGING

https://docs.graphcore.ai/projects/poplar-user-guide/en/latest/env-vars.html

CREATE EXECUTION PROFILE

22

POPLAR_ENGINE_OPTIONS='{"autoReport.all":"true", "autoReport.directory":"./report"}’

• The PopVision Graph Analyser uses report files generated during compilation and execution

by the Poplar SDK.

• These files can be created using POPLAR_ENGINE_OPTIONS.

• In order to capture the reports needed for the PopVision Graph Analyser you only need to

set POPLAR_ENGINE_OPTIONS='{"autoReport.all":"true"}' before you run a program. By

default this will enable instrumentation and capture all the required reports to the current

working directory.

EXECUTABLE CACHE
If you often run the same models you might want to enable executable caching to
save time:

POPTORCH:

• You can do this by either setting the POPTORCH_CACHE_DIR environment
variable or by calling poptorch.Options.enableExecutableCaching.

TENSORFLOW:

• You can use the flag --executable_cache_path to specify a directory where
compiled files will be placed. Fused XLA/HLO graphs are hashed with a 64-bit
hash and stored in this directory.

 E.g. TF_POPLAR_FLAGS='--executable_cache_path=/tmp/cachedir'

23

Warning
The cache directory might grow large quickly. Poplar doesn’t evict old models from the
cache and, depending on the number and size of your models and the number of IPUs
used, the executables might be quite large.
It is the your responsibility to delete the unwanted cache files.

https://docs.sourcevertex.net/files/poptorch-poptorch-user-guide-latest/reference.html

SYNTHETIC-DATA

24

TF_POPLAR_FLAGS= "--use_synthetic_data --synthetic_data_initializer=random"

Used for measuring the IPU-only throughput and disregards any host/CPU activity.

25

GRAPHCORE COMMAND LINE TOOLS

https://docs.graphcore.ai/projects/command-line-tools/en/latest/index.html

https://docs.graphcore.ai/projects/command-line-tools/en/latest/index.html

26

APPLY AND JOIN TODAY

Apply at alcf.anl.gov/science/directors-
discretionary-allocation-program

Join at graphcore.ai/join-community

https://www.alcf.anl.gov/science/directors-discretionary-allocation-program
https://www.alcf.anl.gov/science/directors-discretionary-allocation-program
https://www.graphcore.ai/join-community

THANK YOU

CONFIDENTIAL

Alexander Tsyplikhin
alext@graphcore.ai

28

