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AGENDA

GNNs
« Graphcore IPUs and PyTorch Geometric
« Case study: SchNet for molecular property prediction

LLMs
 HuggingFace Optimum
« PopART for GPT-3175B

Q&A

Slides courtesy of AriannaS, AdamS, SteveB, JoshK



Parallelism

Processors [l

Memory

Memory Access

&

IPU - Architectured For Al

Massive parallelism with ultrafast memory access

CPU

Designed for scalar processes

Off-chip memory

GPU

SIMD/SIMT architecture. Designed
for large blocks of dense
contiguous data

INEEE
A
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Model and data spread across off-
chip and small on-chip cache, and
shared memory

IPU

Massively parallel MIMD. Designed
for fine-grained, high-
performance computing

Model and data tightly coupled,
and large locally distributed SRAM



BOW |PU
350TFLOPS(F16)
900MB SRAM
1472 IPU-Tiles
8832 independent
instruction streams

IPU-Tile
236GFLOPS(F16)
640KB SRAM

6 HW Threads
1.83GHz

128 F160ps/Cycle
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4x IPU

256 GB DRAM

DRAM/SSD

*

NIC/SMARTNIC

o > 64 GB/s IPU-Link
100GE Host-Link Network I/F
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100Gbps IPU-GW Link
32 GB/s PCle G4

L 4
l.'lllllllllllllllllllllllllllll...

JEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEENER

LN ]

321

=N

,,,,,

xxxxxx

=
lmi:nllllsm’
an;;“aéé?ms
i ) 0 h
Tty

(((((




O&B-LSE

—— Large - Scale Challenge —

@ NeurlPS 2022

GRAPHCORE IPU ACHIEVES
DOUBLE FIRST PLACE!

GRAPH-LEVEL LINK-LEVEL
PREDICTION PREDICTION
& &
e e
) GRAF’HCORE GRAFHCORE

: Valence -.:, “Mila

@ https://ogb.stanford.edu/neurips2022/results/

Open Graph Benchmark was established in
2020 with the aim of objectively measuring
the performance of different graph models
and compute systems

“As | started applying IPUs for molecular property
predictions, | was shocked to see the speed

improvements over traditional methods.”
Dominique Beaini, Research Team Lead at Valence Discovery
and Associate Professor at Mila

00
Valence oy



https://ogb.stanford.edu/neurips2022/results/

OGB-LSC PCQM4MV2 CHALLENGE

O&B-LSE
&7
 Simulating molecular properties using traditional — Large - Scale Challenge —

methods (like DFT — Dense Functional Theory) is a
very slow process

OGB-LSC 2022
 Finding the optimal model & implementation GRAPH-LEVEL
required fast experimentation and innovation to PREDICTION
explore combined benefl_ts of GNN approaches with PCOMAMY>
transformer-style attention ’ ‘
* The IPUs unique MIMD architecture and ultra-fast W 1st ’
. -
memory bandwidth enables :
. FIIeX|b|I|ty for innovation . . GRAPHCORE
« High performance for speed of experimentation o
..... Valence g=5Mila

 |PUs efficient scaling enabled quick experimentation
on small models & efficient tuning on larger
@ ‘production’ models 5

https://ogb.stanford.edu/neurips2022/results/



https://ogb.stanford.edu/neurips2022/results/

OGB-LSC WIKIKGO9OMV2 CHALLENGE

Knowledge graph completion challenge using
WikiKG9OMv2 dataset, based on the knowledge
graph consisting of pages extracted from Wikipedia

Dataset scale presents a problem for standard
techniques

This is addressed efficiently by exploitation of the
IPU systems high capacity streaming memory,
supplementing the large and ultra-fast In-Processor
memory & inter-processor communication via IPU-
Links

This enabled quick iteration across the
hyperparameter space and experimentation with
new ideas, training of hundreds of models to
convergence, and in the end construction of an

@ ensemble of models for increased predictive power

O&B-LSE

—— Large - Scale Challenge —

OGB-LSC 2022
LINK-LEVEL
PREDICTION

WIKIKGO9OMV2

\’15'?’

- &

GRAFHCORE

7

https://ogb.stanford.edu/neurips2022/results/



https://ogb.stanford.edu/neurips2022/results/

@ PyG PYTORCH GEOMETRIC FOR IPU

7 b . . TECHNICAL BLOG | GETTING STARTED
PyG is the ultimate library for
Graph Neural Networks

Build graph learning pipelines with ease

GRAPHCORE USERS CAN NOW . & —
BUILD AND REUN GNNS WITH r
PYTORCH GEOMETRIC

Mo GRAFHCORE e

iitenEy ACCELERATING PG ON IPUS:
Blazej Banaszewski UNLEASH THE POWER OF i \ :
GRAPH NEUF:4L NETWORKS . . ’ s

Written By:

pyg.org

« GETTING STARTED WITH

Blazej Banaszewski, Adam €

Akash Swamy & Mihai Polce FYTORCH GEOMETRIG (PYG)
ON GRAFHCORE IFUS

Written By: @

Adam Sanders and Arianna Saracino

“The suitability of IPUs for running GNNs
and the kind of performance advantage
that Graphcore and its customers have
demonstrated is really helping to accelerate
the uptake of this exciting model class”




— @ @

« Hardware lends itself to GNNs - fast gather scatter operations
« Already possible to run PyTorch on IPUs

« PyTorch Geometric is the PyTorch library to unify deep learning on graph-
structured data

« Aim to make it as easy as possible to use PyTorch Geometric on IPUs and start
accelerating your GNNs

@ 10



AHEAD OF TIME COMPILATION

What? o
« The model is compiled into a single compute PyTorch
graph with forward and backward passes. model
£
Why? '
« Efficient memory & communication ~ .
« Allows optimisations to be applied during 3 =<y Compiled
compilation sl PR graph
Ly 4 .
2

What does it mean for you?
« All tensors in your model must be fixed size
« This includes the model inputs IPU



PYG MINI-BATCHING OF SMALL GRAPHS

Adjacency of samples in
dataset

0]

. 4

Mini-batching
(batch size 3)

v

Adjacency of each mini-
batch

Mini-batch 1

Sparse representation of
each mini-batch

o [ 2

Mini-batch 2

Bl

Mini-batch 3



FIXED SIZE MINI BATCHING

Adjacency
of each
mini-batch

5
_ ,

Mini-batch 1 Mini-batch 2 Mini-batch 3

Sparse

representation 0 -Z- 3 4 5 P _

of each mini-
batch

. . I
Message paSSIng JUSt WOI’kS. dataloader FixedSizeDatalLoader(dataset,

Do we have to do any masking? num_nodes=300,

num_edges=600,
batch_size=10)

loss = F.mse_loss(x[:-1], yl[:-1])



FIRED SIZE INPUTS WITH PACKING

Stream packing

0 7

Adjacency
of each
mini-batch

Mini-batch 1 Mini-batch 2 Mini-batch 3

Sparse

representati I-ZE. 4 5 - 7 .9 10-

on of each
mini-batch

Global packing
https://arxiv.org/abs/2209.06354




AND OTHER DYNAMIC THINGS

Other operations in your model may be dynamic that you wouldn't expect

Adding self-loops

conv = GCNConv(10,

Add remaining self Iocips /
g %

10,
add_self_loops=True) @\ /
@ ©
transform = T.AddSelfLoops()
Batch 1 Batch 2

Using masks of different sizes each batch ) ()

out out[batch.train_mask] ®\
o @

out torch.where(batch.train_mask, out, -100)

16



EUNNING PYG ON IPUS: POPTORCH

PopTorch compiles PyTorch models into Poplar executables

Poplar® SDK

\

{ POPLAR® Drivers \ Platform Hardware
g
5 5 5 Mk1 IPU
PopSPARSE 3 = @ Systems
o ()] A - (@)
: AN B =
S s BFAEN S B &
Nt . PopLIN N - EEE : BEE S
O 5 |2 =8 2 Il 2 K
(e} —_— =
= 5 ! PopOPS 8 < 2 8 BN & e IPU-M2000
= a |= o IS o N - Bl ¢
al PopRAND a - o o i T =
S EEN: ER - B
9O PopUTIL SHEHEN:E 's
= a o £ =
GCL a S 5
g = IPU-POD,,




EUNNING PYG CON IPUS: POPTORCH GEOMETERIC

PopTorch Geometric enables GNN models to be run on Graphcore IPUs

PyTorch Geometric
What we have added:
Models
’ Layer support on Graphcore IPUs )
User-Defined Models Pre-Defined Models and Examples — Verified many layers on the IPU

< /

- L < iz Data Loaders for Graphcore IPUs 2

Operators Storage . - T
3 ad Tpr Fixed Size Data PopTorch Data
Message Passing Data Loaders Do hiz o Loaders _ Loader
|8 I integration
torch cluster 4 Pool Ing Mini-Batching Neighbor Sampling  Subgroph Samphing 32
n Poplars
: AR - High performance gather
Normalization Dz:ta P Transforms PopTorch fatatier opetations
-
Readout Datasets \/
1 1
Engine
O PyTorch - torch.scatter - torch.sparse




BENCHMARKING MESSAGE PASSING AS
GATHER/SCATTER OPERATICONS

ed

e21 / \ e31 ~e21 /

ed1

e2l

e31

)

Original graph Gather Scatter(-add)
x1 target node Messages are collected from Messages are aggregated along
nelghborlng nodes outbound edges

T = (f?;, aggregate | (Z;, T;, €] )
jeN (7)



HIGH PERFOREMANCE SCATTER-ADD ON IPUS

For small scatter input size, IPU achieves >16x speedups vs GPU
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Graphcore BOW-M2000 vs NVIDIA A100 (1x, blue plane)



HIGH PERFORMANCE GATHER ON IPUS

For small gather input size, IPU achieves >8x speedups vs GPU
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Graphcore BOW-M2000 vs NVIDIA A100 (1x, blue plane)



HIGH PERFORMANCE GATHER-SCATTEFR QOPS ON IPUS

Why faster on IPUs?

Large, high bandwidth on-chip SRAM.
Support for fine-grained parallelism.
Fast all-to-all communication links.

IPU

Massively parallel MIMD. Designed
for fine-grained, high-
performance computing

Model and data tightly coupled,
and large locally distributed SRAM



CASE STUDY: SCHNET FOR MOLECULAR
PROPERTY PREDICTION

Training on Graphcore IPUs with PyG

Use the QM9 dataset from MoleculeNet to train the SchNet model to predict a graph-level
property, the HOMO-LUMO energy gap

@ PyTorch Geometric on IPU05... £ Share © 2

STOP MACHINE @ Running RESTART KERNEL SAVE & RUN ALL ©

Copyright (c) 2023 Graphcore Ltd. All rights reserved

us

Molecular property prediction on IPU using SchNet - Training with PyTorch
Geometric

This notebook demonstrates training a SchNet graph neural network with PyTorch Geometric on the Graphcore IPU. We will use the QM9 dataset from the
MoleculeNet: A Benchmark for Molecular Machine Learning paper and train the SchNet model to predict the HOMO-LUMO energy gap

Domain Tasks Model Datasets Workflow Number of IPUs Execution time

GNNs Graph Classification SchNet QM9 Training, evaluation recommended: 16 (min: 4) -4 minutes

This notebook assumes some familiarity with PopTorch as well as PyTorch Geometric (PyG). For additional resources please consult:

PopTorch Documentation

PopTorch Examples and Tutorials

PyTorch Geometric

PopTorch Geometric Documentation

Running on Paperspace

The Paperspace environment lets you run this notebook with no set up. To improve your experience we preload datasets and pre-install packages, this can take
a few minutes, if you experience errors immediately after starting a session please try restarting the kernel before contacting support. If a problem persists or
you want to give us feedback on the content of this notebook, please reach out to through our community of developers using our slack channel or raise a
GitHub issue.



CASE STUDY: SCHNET FOR MOLECULAR
PROPERTY PREDICTION

Notebook walkthrough
QM9 dataset

Molecular properties of interest to train SchNet are:

« z atomic number for each atom in the molecule

« pos contains the 3D structure of the molecule

« y contains the 19 regression targets: we sliceity[:,4] where the HOMO-LUMO gap is
stored

atum dataset[1232

tum, datum.z tum.pos atum.y
(Data(x=[13, 11], edge_index=[2, 28], edge_attr=[28, 4], y=[1, 19], pos=[13, 3], idx=[1], name='gdb_125563"', z=[13]),
tensor((6, 6, 7, 7, 6, 7, 7, 7, 7,1, 1, 1, 11),
tensor([[-2.7500e-02, 1.4963e+00, 5.2800e-02],

[-9.1000e-03, 1.2800e-02, 2.6000e-031],

[-4.2200e-02, -7.5060e-01, -1.0686e+00],

[-9.3000e-03, -2.1018e+00, -7.2150e-011,

[ 4.3600e-02, -2.0859e+00, 5.8330e-011,

[ 1.0010e-01, -2.8658e+00, 1.7010e+00],

[ 1.3480e-01, -2.0775e+00, 2.8101e+001],

[ 1.0380e-01, -8.4570e-01, 2.4693e+00],

[ 4.7300e-02, -8.2400e-01, 1.1011e+00],

[ 8.7460e-01, 1.8923e+00, 5.3110e-011,

[-8.0800e-02, 1.8742e+00, -9.6890e-011,

[-8.9120e-01, 1.8675e+00, 6.1440e-011,

[ 1.1880e-01, -3.8660e+00, 1.7999e+0011),
tensor([5.2708]))




CASE STUDY: SCHNET FOR MOLECULAR
PROPERTY PREDICTION

Notebook walkthrough

Data loading and mini-
batching

O Run v 12

loader Dataloader(dataset, batch_size=4)

it iter(loader)
next(it), next(it)

AOT compilation requirement on IPU

The mini-batches will need to be adapted to be fixed size
(DataBatch(y=[4], pos=[16, 3], z=[16], batch=[16], ptr=[5]),
DataBatch(y=[4], pos=[21, 3], z=[21], batch=[21], ptr=[5]))

Padding individual dataset samples

© Run v 17

data Batch.from_daeaslist([dataset[0]])
pad_transform Pa node_pad_value=AttrNamePadding({"z": 0, "pos": O
padded_batch pad_teefisform(data)

padded_batch -

DataBatch(y=[1], pos=[32, 3], z=[32], batch=[32], ptr=[2], num_nodes=32)



CASE STUDY: SCHNET FOR MOLECULAR
PROPERTY PREDICTION

Notebook walkthrough
Efficient data loading: padding the mini-batch

O Run v 23

batch_size

v dataloader CustomFixedSizeDataloader(
dataset, batch_size=batch_size, num_nodes=32
’ # slice off the padding molecule and calculate the mse loss

prediction prediction[0:-1]
g target :arggt[i: 1] -
The mini-batches have now the same sizes &= loss = F.mse_loss(prediction, target)

return prediction, loss

© Run v 24

dataloader_iter iter(dataloader)
first_batch next(dataloader_iter.
second_batch next(dataloader_iter)
print(first_batch)
print(second_batch)

DataBatch(y=[8], pos=[224, 3], batch=[224], ptr=[9], z=[224], num_nodes=224, num_edges=0)
DataBatch(y=[8], pos=[224, 3], batch=[224], ptr=[9], z=[224], num_nodes=224, num_edges=0)

18



CASE STUDY: SCHNET FOR MOLECULAR
PROPERTY PREDICTION

Notebook walkthrough

Train SchNet on IPU

Select your hyperparameters and PopTorch options:

© Run v 27

learning_rate le
num_epochs

© Run v

int(num_ipus options

n
replication_factor)

max(1, 16 options

4 options.
.replicationFactor(replication_factor
.Training.gradientAccumulation(gradient_accumulation)

options
options

32 options.
gradient_accumulation

28

poptorch.Options()
enableExecutableCaching(executable_cache_dir
outputMode(poptorch.OutputMode .All
devicelterations(device_iterations.

Recreate the data loader to pass it the selected hyperparameters and options, define the model
and compile it on IPU:

© Run v 32

torch.manual_seed(0

knn_graph KNNInteractionGraph(cutoff=cutoff, k=28
model SchNet(cutoff=cutoff, interaction_graph=knn_graph
model.train
v model = TrainingModule
model, batch_size=batch_size

optimizer
training_model

poptorch.optim.AdamW(model.parameters()
poptorch.trainingModel(model, options

data next(iter(train_loader
training_model.compile(data.z, data.pos, data.batch, data

Graph compilation: 100% ||l 100/100 [00:05<00:00]

replace_softplus=additional_ optimiz

tions

W

lr=learning_rate)
optimizer

Y



CASE STUDY: SCHNET FOR MOLECULAR
PROPERTY PREDICTION

Notebook walkthrough
Train SchNet on IPU

Define the training loop and finally plot the mean of the loss

O Run v 33 ORun v 35
: df pd.DataFrame(train
train g sns.lineplot(data=df[df.epoch 0 x="epoch"
g.set_xticks(range(0, num_epochs 2, 2

» . +4 \
v for epoch in range(num_e g.figure.show

bar tqdm(train_lo

for i, data in enumerate(bar 038
_, mini_batch_loss training_model(data.z, data.pos, data.batch, data.y '
loss float(mini_batch_loss.mean 0.36
train.append({ "epoch”: epoch, "step”: 1, "loss": loss 034
bar.set_description( ¥"Epoch {epoch} loss: (loss:0.6f)"
w 0.32
o
Epoch 0 loss: 0.375165: 100% (NS 30/30 [00:24<00:00, 1.21it/s] 00
Epoch 1 loss: 0.292912: 100% [N 30/30 [00:24<00:00, 1.21it/s] 028
Epoch 2 loss: 0.270268: 100% | [N 30/30 [00:25<00:00, 1.20it/s] 028
Epoch 3 loss: 0.255817: 100% | 30/30 [00:24<00:00, 1.21it/s] o2
0 2 - 6

Epoch 4 loss: 0.233512: 100% | 30/30 [00:24<00:00, 1.21it/s]

epoch

18



LARGE LANGUAGE MODELS



&< - C @& github.com/huggingface/optimum-graphcore xam X B »

‘= README.md mﬁ!@ﬁ@@ﬁ 12

Contributors 36

O@» Q<
s

+ 25 contributors

+.

Languages
® Python 52.1%

® Jupyter Notebook 47.8%

@ Optimum Graphcore is the interface between the @ Transformers library and Graphcore IPUs. It provides a set ® Makefile 019

of tools enabling model parallelization and loading on IPUs, training, fine-tuning and inference on all the tasks
already supported by &) Transformers while being compatible with the & Hub and every model available on it out
of the box.

What is an Intelligence Processing Unit (IPU)?

Quote from the Hugging Face blog post:

IPUs are the processors that power Graphcore's IPU-POD datacenter compute systems. This new type of
processor is designed to support the very specific computational requirements of Al and machine learning.
Characteristics such as fine-grained parallelism, low precision arithmetic, and the ability to handle sparsity
have been built into our silicon.

Instead of adopting a SIMD/SIMT architecture like GPUs, Graphcore's IPU uses a massively parallel, MIMD
architecture, with ultra-high bandwidth memory placed adjacent to the processor cores, right on the silicon
die.

This design delivers high performance and new levels of efficiency, whether running today’'s most popular
models, such as BERT and EfficientNet, or exploring next-generation Al applications.

o



< - C @& github.com/huggingface/optimum-graphcore

:= README.md

How to use Optimum Graphcore

To immediately use a model on a given input (text, image, audio, ...), we support the pipeline API:

—>>> from transformers import pipeline
+>>> from optimum.graphcore import pipeline

# Allocate a pipeline for sentiment-analysis

—>>> classifier = pipeline('sentiment-analysis', model="distilbert-base-uncased-finetuned-sst-2-eng’
+>>> classifier = pipeline('sentiment-analysis', model="distilbert-base-uncased-finetuned-sst-2-engl
>>> classifier('We are very happy to introduce pipeline to the transformers repository.')

[{'label': 'POSITIVE', 'score': 0.9996947050094604}]

It is also super easy to use the Trainer API:

—from transformers import Trainer, TrainingArguments
+from optimum.graphcore import IPUConfig, IPUTrainer, IPUTrainingArguments

—training_args = TrainingArguments (

+training_args = IPUTrainingArguments(
per_device_train_batch_size=4,
learning_rate=1le-4,

+ # Any IPUConfig on the Hub or stored locally

+ ipu_config_name="Graphcore/bert-base-ipu",

+)

o]

+# Loading the IPUConfig needed by the IPUTrainer to compile and train the model on IPUs

+ipu_config = IPUConfig.from_pretrained(

+ training_args.ipu_config_name,

)

# Initialize our Trainer
—trainer = Trainer(
+trainer = IPUTrainer(

model=model,
+ ipu_config=ipu_config,
args=training_args,

o2
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@& github.com/huggingface/optimum-graphcore

README.md

Supported models

The following model architectures and tasks are currently supported by &2 Optimum Graphcore:

BART
BERT
ConvNeXt
DeBERTa
DistilBERT
GPT-2
GroupBERT
HuUBERT
LXMERT
RoBERTa
T5

ViT
Wav2Vec2

Whisper

XXX XX 8

Masked
LM

Causal
LM

X
X

X 8

Seq2Seq LM
(Summarization,
Translation, etc)

Sequence
Classification

<M< M <M <M<

S

If you find any issue while using those, please open an issue or a pull request.

Token
Classification

S

(<M <M <M<

Ques
Answi

<M<



< - C @ github.com/huggingface/optimum-graphcore/tree/main/examples

= 0 huggingface / optimum-graphcore

<> Code () Issues 9

[[ Code

¥ main

Q Gotofile

> BB .github
> B docs
I v 5 examples
> [ audio-classification
> [ image-classification

> [ language-modeling

v

9 multiple-choice

> [ question-answering
> [ speech-pretraining
> [ speech-recognition
> [ summarization

> B text-classification

> [ token-classification

v

9 translation
[ README.md
v 5 notebooks

@ > BB images

> [ packed_bert

19 Pullrequests 8

optimum-graphcore / examples /| (3

(® Actions [ Projects

4
o
3
o

EE SN SN SN BN SN SN SN BN BN BN BN |

audio-classification

image-classification

language-modeling

multiple-choice

question-answering

speech-pretraining

speech-recognition

summarization

text-classification

token-classification

translation

README.md

@ Security

Q. Type (/) to search

[~ Insights

(:3 jimypbr Update examples requirements for sdk3.3 (#434) v

Last commit message

Update examples requirements for sdk3.3 (#434)

Update examples requirements for sdk3.3 (#434)

Bump transformers to 4.29.2 (#389)

Bump transformers to 4.29.2 (#389)

Bump transformers to 4.29.2 (#389)

Update examples requirements for sdk3.3 (#434)

Update examples requirements for sdk3.3 (#434)

Bump transformers to 4.29.2 (#389)

Bump transformers to 4.29.2 (#389)

Bump transformers to 4.29.2 (#389)

Bump transformers to 4.29.2 (#389)

Update README.md

>-

xan % Bw0O g

+- 0 n e @
&

Add file ~ 00

5c4a5c6 - last week (L) History

Last commit date

last week
last week
last month
last month
last month
last week
last week
last month
last month
last month
last month

last year
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&

- C @& github.com/huggingface/optimum-graphcore/tree/main/notebooks

[ Code

¥ main v P

Q Gotofile

> B9 .github

> BB docs

v B examples

>

>

>

>

>

0 audio-classification
B9 image-classification
[ language-modeling
9 multiple-choice

8 question-answering
I speech-pretraining
0 speech-recognition
B9 summarization

0 text-classification
[ token-classification
B translation

[ README.md

I v [E& notebooks

>

>

>

>

>

M images

0 packed_bert

BB stable_diffusion

I text_embeddings_models

9 wav2vec2

[ README.md

[ audio_classification.ipynb

[ deberta-blog-notebook.ipynb
[ external_model.ipynb

[ flan_t5_inference.ipynb

[ image_classification.ipynb

Documentation « Share feedback

optimum-graphcore | notebooks /

Introduction to Optimum Graphcore

Sentiment analysis with pipelines

Real Time Name Entity Recognition on
the IPU

Train an external model

Train your language model
How to fine-tune a model on text
classification

How to fine-tune a model on language
modeling

How to fine-tune a model on token
classification

How to fine-tune a model on question
answering

How to fine-tune a model on multiple
choice

How to fine-tune a model on translation
How to fine-tune a model on
summarization

How to fine-tune a model on audio
classification

How to fine-tune a model on image
classfication

wav2vec 2.0 Fine-Tuning on IPU

wav2vec 2.0 Inference on IPU

Stable Diffusion Text-to-Image
generation

Introduce Optimum-Graphcore with a BERT fine-tuning example.

Use the sentiment-analysis pipeline to quickly evaluate pre-trained
models on the IPU.

Use Gradio and pipelines to prototype a web application doing fast
token classification.

Show how to train an external model that is not supported by
Optimum or Transformers.

Show how to train a model for causal or masked language modelling
from scratch.

Show how to preprocess the data and fine-tune a pretrained model on
any GLUE task.

Show how to preprocess the data and fine-tune a pretrained model on
a causal or masked LM task.

Show how to preprocess the data and fine-tune a pretrained model on
a token classification task (NER, PoS).

Show how to preprocess the data and fine-tune a pretrained model on
SQUAD.

Show how to preprocess the data and fine-tune a pretrained model on
SWAG.

Show how to preprocess the data and fine-tune a pretrained model on
WMT.

Show how to preprocess the data and fine-tune a pretrained model on
XSUM.

Show how to preprocess the data and fine-tune a pretrained Speech
model on Keyword Spotting

Show how to preprocess the data and fine-tune a pretrained model on
image classification.

How to fine-tune a pre-trained wav2vec 2.0 model with PyTorch on the
Graphcore IPU-POD16 system.

How to run inference on the wav2vec 2.0 model with PyTorch on the
Graphcore IPU-POD16 system.

Run a Stable Diffusion (Conditional UNet) pipeline on the text-to-
image generation task.
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< - C @& github.com/graphcore/examples/tree/master/nlp/gpt3_175B/popxI T a n % B a0 &

4
[ Code examples / nlp / gpt3_175B | popxl / T Top
¥ master - + Q README.md /S =
Q Gotofile t

> BB si_for_simulation GPT-3 training on IPUs using PopXL

> [ finance

> B gnn Framework Domain Model Datasets Tasks Training Inference Reference
> ltimodal ¥4 Min. 256 IPUs Language Models
8 multimods GPT- oL Next sentence prediction, . guag
PopXL NLP Wikipedia . . (POD256) )( are Few-Shot
v & nlp 3 Question/Answering _
required Learners
> [0 bert
> [ bloom/popxI This README describes how to run GPT-3 models for NLP pre-training on Graphcore IPUs using the PopXL library. A combination of phased

execution, tensor model parallelism, data parallelism, and remote tensor sharding are utilised to train the models.
> [ dolly/popx!

> [ gpt2/pytorch This application shows how to run larger models on IPU. The techniques to do this mean that performance is lower than for models that fit in

> B8 gpt3_175B/popx ] IPU memory. Large model training or fine-tuning requires a big Pod installation. The minimum to run pre-training with this model is a
- Pod256. PopXL is an experimental framework and may be subject to change in future releases.
> B9 gpt3_2.7B/popxl
> B gpt_j/popx! H
opt-ifpop Instructions summary

> B9 t5/popx!
> [ preview 1. Install and enable the Poplar SDK (see Poplar SDK setup)
> B probability 2. Install the system and Python requirements (see Environment setup)
> B speech 3. Download the WIKI-103 dataset (See Dataset setup)
> [ tutorials

Poplar SDK setup
> B9 utils
> [ vision To check if your Poplar SDK has already been enabled, run:
[ .git-blame-ignore-revs
echo $POPLAR_SDK_ENABLED LlT—l

Documentation « Share feedback



Modes of Execution

Tensor Parallelism (TP)
Data Parallelism (DP)

Device set 1

Device set 1

Device set 2 Device set 2

Duplicat
e model

Phased Execution (PE)

Device Execution queue

Device set 3

@ a



Matmul TP

. . . X - {n,m}
« Consider sharding a matmul in two ways: A - (m, k)
fX)=XA
XA = (XO Xl) (AO Al) Xy - {n,m,}
X, X3)\4, A,
p Xp = {n,mp}
. X()AO + X1A2 X()Al + Xl 3)
A = {m, k) X4 = (XZAO + X34, XA, +X;3 As Ay = {my k)
Ap > {m, kg} Ap — {mp, k}
Xo Xl) (Ao Al) Xo X1\ [(A0\ (X0 X1\/(A: (XO Xl) (AO A1> (X0> 0 (Xl)
= = + A, A
(XZ X3/ \Ay : 43 (Xz X3> (Az) (Xz X3> (A3> Xyt X3/ \A; Az X (4o A1) X3 (42 43)
= (XAA XAB) :XAAA +XBAB
Concatenation Summation
Column-wise sharding: Row-wise sharding:
(5¢) (XA, XA) := AllGather(XA,, XAp) (XA, XA) := AllReduce(X,44, XgAp)
42




Feed-Forward Layer: No Parallelism

Shapes

Data/
Op output

X
Y
X=X@Y

X=X@~Z

Standard

[s, h]
[h, 4h]
[s, 4h]
[4h, h]
[s, h]

Key:

Data

Op

43




Feed-Forward Layer: ID Tensor Parallelism

Shapes

Data/
Op output

X
Y
X=X@Y

X=X@~Z

Standard

[s, h]
[h, 4h]
[s, 4h]
[4h, h]
[s, h]

1DTP

[s, h]
[h, 4h/tp1]
[s, 4h/tp1]
[4h/tp1, h]
[s, h]

X

A 4

LayerNorm

A 4

AllReduce
(Grad)

A 4

Matmul }<

Gelu

AllReduce
(Fwd)

A\ 4

X

Key:
Data
Op

Output
scheme:

Device Set A

Device Set B

Column-
partitioned

Row-partitioned

Replicated
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Feed-Forward Layer: 2D Tensor Parallelism

Shapes

Data/
Op output

X
Y
X=X@Y

X=X@~Z

Standard

[s, h]
[h, 4h]
[s, 4h]
[4h, h]
[s, h]

1DTP

[s, h]
[h, 4h/tp1]
[s, 4h/tp1]
[4h/tp1, h]
[s, h]

2DTP

s, h/tp2]
[h/tp2, 4h/tp1]
[s, 4h/tp1]
[4h/tp1, h/tp2]
s, h/tp2]

TPLay

AllRe
(Grad

Matmul fe¢—

A 4

AllIReduce
(TP2)

y

Gelu

Mat

AllRe
(Fwd

Key:
Data
Op

Output
scheme:

TP1 Set A

TP1 Set B

TP2 Set A

Column-
partitioned

Row-

partitioned

Multi-
artit

Replicated
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TP2 Groups (size 8) Pod 256

1] [—

128

Model-Device Mapping

Rack 1 Rack 2 Rack 4
— IPU Link 15.75GB/s raw — Gateway Link 12.5GB/s raw
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TP1 Groups (size 8, stride 8) Pod 256

Model-Device Mapping

Rack 1 Rack 2 Rack 4
— IPU Link 15.75GB/s raw — Gateway Link 12.5GB/s raw
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APPLY AND JOIN TODAY

Jo
1l

HOME / SCIENCE

Director’s Discretionary Allocation Program

The ALCF Director’s Discretionary program provides “start up”
awards to researchers working to achieve computational
readiness for for a major allocation award.

Molecular dynamics simulations based on machine learning help scientists learn about the movement of
the boundary between ice grains (yellow/green/cyan) and the stacking disorder that occurs when
hexagonal (orange) and cubic (blue) pieces of ice freeze together. Image: Henry Chan and Subramanian
Sankaranarayanan, Argonne National Laboratory

Apply at alcf.anl.gov/science/directors-
discretionary-allocation-program

1t general v

n

charlieb 6:05 AM
;\\q'}' Pleased to share with you all some new work from the Graphcore research team! ;

Our paper Unit Scaling introduces a new method for low-precision number formats, making FP16
We've managed to train BERT in these formats for the first time without loss scaling.

e You can find our blog post here: https:/www.graphcore.ai/posts/simple-fp16-and-fp8-traini
e Paperspace notebook (try it yourself!): https:/ipu.dev/qXfm2a
e Arxiv paper: https:/arxiv.org/abs/2303.11257
(& we were also featured on Davis Blalock’s popular ML newsletter this week) (edited)
graphcore.ai
Simple FP16 and FP8 training with unit scaling
Unit Scaling is a new low-precision machine learning method able to train language
models in FP16 and FP8 without loss scaling. (69 kB) ~

wa N

X arXiv.org

Unit Scaling: Out-of-the-Box Low-Precision Training

We present unit scaling, a paradigm for designing deep learning models that
simplifies the use of low-precision number formats. Training in FP16 or the
recently proposed FP8 formats offers substantial efficiency gains, but can lack
sufficient range for out-of-the-box training. Unit scaling addresses this by
introducing a principled approach to model numerics: seeking unit variance of
Show more

s

Join at graphcore.ai/join-community



https://www.alcf.anl.gov/science/directors-discretionary-allocation-program
https://www.alcf.anl.gov/science/directors-discretionary-allocation-program
https://www.graphcore.ai/join-community

- 1:15PM

- 1:45PM

— 2:30 PM

- 2:45PM

- 3:15PM

— 4:00 PM

— 1:45 PM

- 215PM

— 2:30 PM

- 3:115PM

— 4:.00 PM

TuespbAy, 11 June
Introduction
Graphcore BowPod64 Hardware

Software Stack: TensorFlow, PyTorch, and Poplar

Porting applications with Poplar

How to use Bow Pod64@ ALCF

WEDNESDAY, 12 JUNE

Deep Dive on Graph neural networks and Large Language Models

Profiling with PopVision

Hands-on session

Best Practices, Q&A







