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Agenda - Day 2

Session Description Length Speaker

Inside look at how the compiler works to compile | 20 mins Philip Lassen, Compiler Engineer

i ™
Cire) Cemnmipilier models for Groq, including an overview of

Overview partitioning and scheduling.
Grog Runtime™ Overview of the runtime, including vyhat itis,how ' 20 mins Aviv Weinstein, Systems Software
Overview models are executed, and how data is transferred Engineer

across the chip.

How Groq scales to unlock the fastest inference in = 20 mins Aviv Weinstein, Systems Software

LEMswith Grog the world, specifically around larger models. Engineer

15 MINUTE BREAK «

Throughput Walkthrough of how to compile small models 60 mins  Christopher Culver, Software Engineer
2 . with the Grog Compiler and how to optimize
Optimization with Groqg

them for throughput.

A talk with Igor Arsovski, our Chief Architect and 30 mins Igor Arsovski, Chief Architect & Fellow
What's Next Fellow, on the semiconductor space and what's

next for Groq.
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Grog™ Compiler SRS EIEI SRS I

Philip Lassen
Compiler Engineer
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Grog™ Compiler

AGENDA

What is the Grog Compiler
Grog Compiler vs GrogFlow
Grog Compiler Overview
Frontend
Middle-end

Backend
Scheduler
Modes: standard vs high

Multi-Chip
InterOp
IntraOp
Example: Transformers

groq © 2023 Groq, Inc. |
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Simplified GrogFlow™ Usage Model

Groq Software to Hardware WorkFlow

groq
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Groqg Hardware
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Simplified GrogFlow™ Usage Model
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Function | Alan Assembly Instruction
MEM

Read a,s
Write a,s
Gather s, map
Scatter s, map
Countdown d
Step a
Iterations n

Input Program

Model(torch.nn.Module): Compiler
forward(self, A, x, b):

VXM unary operation
torch.matmul(A, x) + b — binary operation
type conversions

model = Model() Log

torch.onnx.export(model, **inputs, “program.onnx”) EigH

RSgrt

Lw
Iw
ABC
ACC

MXM

SXM Shift up/down N
Permute map
Distribute map
Rotate stream
Transpose sglé6

groq" © 2024 Grogq, Inc. | Grog Al Workshop Groq Public 7



Grog Compiler Frontend

O

() PyTorch

Order of # Ops

* 1000s

Tensor Graph

o

o
o

S

Frontend

Middle-end

Back-end

Assembler

groq © 2024 Grogq, Inc. | Grog Al Workshop

Y

A4

10s

3rd Party Front-ends

Compiler Middle & Backend
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https://github.com/pytorch/pytorch/blob/main/aten/src/ATen/native/native_functions.yaml
https://github.com/onnx/onnx/blob/main/docs/Operators.md
https://docs.google.com/spreadsheets/d/1BgJz1Oe-iKIzQ86wdW5WPd9GzYkwp6IWShpwP1MHavY/edit?usp=sharing

Middle-end

Function Instruction

VXM unary operation
binary operation
type conversions

<< Log

TanH
Exp
RSqgrt

SXM shift up/down N
_ Permute map
Distribute map
Rotate stream
Transpose sgl6
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Scheduler

Problem:
Schedule compute graph to minimize compute cycles
Considerations:

Which compute cycle?

Which Functional unit?

What Streams? Certain streams are reserved

Which Memory slices should we store Constants and Intermediates on?

groq © 2024 Grogq, Inc. | Grog Al Workshop Grog Public 10



Scheduling: Vector vs Tensor

Vector

Schedule single vector operations at a time

Compiler Flag = --effort=high
Tensor

Bulk-schedule multiple vector operations of the same type

So that they occupy a Functional Unit (FU) in consecutive cycles
Compiler Flag = --effort=standard // default

Vector A
C[@] = A[@] + B[@]
for (i = 0; i < 4; ++i) C[1] = A[1] + B[1] _
Cli] = A[i] + B[i] cl2] = A[2] + B[2] C[0..3] = A[0..3] + B[9..3]
C[3] = A[3] + B[3]

groq © 2024 Grogq, Inc. | Grog Al Workshop
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Scheduling: Vector vs Tensor

Vector Tensor

ﬂ \

groqgit(model, inputs, compiler_flags=["--effort=high"]) groqit(model, inputs, compiler_flags=["--effort=standard"])

groq © 2024 Grogq, Inc. | Grog Al Workshop Groq Public
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Parallelism

320 element SIMD units

VXM

MXM SXM

Vector-Vector Matrix-Vector / Data
Operations Matrix-Matrix Reshapes
Multiply

groq © 2024 Grogq, Inc. | Grog Al Workshop
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Inter Op Partitioning

Dev O

LS b ———
. . LBT, |_C'_, e Time

D |

Dev 1
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INntra Op Partitioning

groq

program
A
|—|—|
B C
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Example: FEN in Transformer

groq

| MATMUL

A

| MUL

SoftMax |

?

Linear

i

[ Add&Norm

[

Feed Forward

Add & Norm

3

Feed Forward

| MATMUL | |

MATMUL

t

f

© 2024 Groq, Inc. | Grog Al Workshop

$_/

Add & Norm

T

Multi-Headed
Attention

(O—&

Input Embedding

!

Add & Norm

T

Multi-Headed Attention

i

O—0

[ Add & Norm

Multi-Headed Attention

Output Embedding

!

Groq Public
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FFN

FEN Output
(1,1, 8192)

| MATMUL |
(W:6000x8192)

(1x1x6000)

| MUL |
A

(1X1x6000)

| SILU |
\ (1X1x6000)

(1x1x6000)

| MATMUL | | MATMUL
(W: 8192x6000) (W: 8192x6000)

t t

From Attention
(1,7,8192)
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FFN

FEN Output
(1,1, 8192)
Reduce

| MATMUL |
(W:2000x8192)
(1x1x2000)
| MUL |
A
(1x1x2000)
| SILU |
A (1x1x2000)
(1x1x2000)

MATMUL MATMUL
W: 8192x2000 W: 8192x2000

From Attention
(1,7,8192)

groq" © 2024 Grogq, Inc. | Grog Al Workshop
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Dev 0 Dev 1 Dev 2
FFN Output
(1,1, 8192)
| Reduce |
b1
! |
| MATMUL | | MATMUL | | MATMUL |
(W:2000x8192) (W:2000x8192) (W:2000x8192)
(1X1x2000) (1X1x2000) (1X1x2000)
| MUL | | MUL | | MUL |
y A
(1X1x2000) (1X1x2000) (1X1x2000)
| SILU | | SILU | | SILU |
4 (1X1x2000) \ (1X1x2000) (1x1x2000)
(1x1x2000) (1x1x2000) (1x1x2000)
MATMUL MATMUL MATMUL

| MATMUL | |
(W: 8192x2000) (W: 8192x2000)

t t

| MATMUL
(W: 8192x2000)

| L

W: 8192x2000)

t

t

| MATMUL
(W: 8192x2000)

| | (W: 8192x2000)

t

f

From Attention
1,1,8192)

groq
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Transformers : Inter Op Partitioning

Dev 16-24

Dev 8-15

Dev 0-7

groq~ © 2024 Groq, Inc. | Grog Al Workshop Groqg Public 21
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Crog Runtime SEEER

Aviv Weinstein
Systems Software Engineer
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Grog Runtime

AGENDA

Grog Runtime HW/SW Architecture
Interacting with Grog Runtime as a
Developer

Deeper Dive on Running Inferences
on a GrogChip!

groq © 2024 Groq, Inc. | Grog Al Workshop
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Grog Runtime HW/SW Architecture

Simplified Grog Runtime Diagram

A higher level software interface that runs on a host CPU.
The runtime communicates to Groq Hardware using the Groq Driver, over a PCle interface
Deals with information inside of our compiled .iop files

| Grog Compiler |—> .aa —>| Groq Assembler |—> Jiop

I 4
Compile Time
Runtime |
Al Grog Runtime
Application Groq Driver
Host CPU . PCle " Groq Hardware
(GrogCard, GrogNode, GrogRack)

groq © 2024 Grogq, Inc. | Grog Al Workshop Groqg Public 25



Grog Runtime HW/SW Architecture

Simplified GrogFlow Software to Hardware Diagram

groq

© 2024 Groq, Inc. | Grog Al Workshop

GrogFlow™

O PyTorch 1F A Keras

!

€) ONNX

!
=

MLIR

Grog Compiler

!

Grog Assembler

!

Grog Runtime

!

Groqg Hardware
(GrogCard, GrogNode, GrogRack)

Groq Public



Grog Runtime HW/SW Architecture

Simplified GrogFlow Software to Hardware Diagram

O PyTorch 1F A Keras
'

€) ONNX

!
=

MLIR
Grog Compiler

!

Grog Assembler

!

Grog Runtime

!

Groqg Hardware
(GrogCard, GrogNode, GrogRack)

GrogFlow™
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Grog Runtime HW/SW Architecture

Simplified Grog Runtime Diagram

Y

Grog Assembler

Y

dop

Groqg Compiler >~ .ad
L 7
Compile Time
Runtime
Al Grog Runtime
Application Groq Driver

Host CPU

PCle

groq © 2024 Groq, Inc. | Grog Al Workshop

Groq Hardware

(GrogCard, GrogNode, GrogRack)
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Grog Runtime HW/SW Architecture

Simplified Grog Runtime Diagram

aa

. Grog Assembler ﬁ
L 7

Compile Time | . this talk

Runtime
.

Host CPU Groq Hardware
(GroqCard, GroqNode, GrogRack)

Y

Y

Grog Compiler

Focus of
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Grog Runtime HW/SW Architecture

Grog Runtime

Higher level software interface to Grog hardware
Has an “idea” of what an .iop is and contains.
Runtime includes code for:
Parsing IOP files
Initializing the chip
Allocating input and output host buffers
Loading and invoking programs
C++ and Python based implementations.

groq © 2024 Grogq, Inc. | Grog Al Workshop

Groq Runtime
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Grog Runtime HW/SW Architecture

Simplified Grog Runtime Diagram

aa

. Grog Assembler —>m
L 7 r

Compile Time | .. this talk

Runtime
"4
Al Groq Runtime

PCle
Host CPU <_-_, Groq Hardware
(GroqCard, GroqNode, GrogRack)

Y

Y

Grog Compiler

Focus of
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Grog Runtime HW/SW Architecture

Input/Output Package File (.iop) Format

groq

Grog's representation of an executable for GrogChip
Emitted by the Grog Assembler/Grog Compiler

Protobuf container that contains information on:

Model instructions and weights
Instructions on how to load the GrogqChip's SRAM.
Model Input/Output tensor information

Debug Metadata

© 2024 Groq, Inc. | Grog Al Workshop

Compile Time

> —>]
r

Runtime
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Grog Runtime HW/SW Architecture

Simplified Grog Runtime Diagram
- Groqg Assembler W
L 7

aa

Y

Y

Grog Compiler

Focus of

Compile Time | . this talk

Runtime
v
Al Groq Runtime

Host CPU Groq Hardware
(GroqCard, GroqNode, GrogRack)
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Grog Runtime HW/SW Architecture

Groq Driver

Low-level PCle hardware interface
DMA data transfers to/from GrogChip
CSR reads/writes

Based on a simple Linux user-space VFIO driver Groq Driver
Lowest level between how the host CPU and Groqg LPU

communicate with each other

groq © 2024 Grogq, Inc. | Grog Al Workshop Groqg Public 34



Grog Runtime HW/SW Architecture

Simplified Grog Runtime Diagram
- Groqg Assembler W
L 7

aa

Y

Y

Grog Compiler

. . Focus of
Compile Time | _ ] this talk
Runtime

Al Groq Runtime
Application Groq Driver 4

Host CPU Groq Hardware
(GroqCard, GroqNode, GrogRack)
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Grog Runtime HW/SW Architecture

Groq Hardware

GrogCard
1Groqg LPU Chip
GrogNode
8 GroqgCards per GrogNode
GrogRack
9 GrogNodes per GrogRack
Total of 72 GrogChips

groq" © 2024 Grogq, Inc. | Grog Al Workshop

GroqCard™

groq

GrogqNode™

GrogRack™
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Grog Runtime HW/SW Architecture

Simplified Grog Runtime Diagram
- Groqg Assembler W
L 7

aa

Y

Y

Grog Compiler

Focus of

Compile Time | .. this talk
Runtime

Al Groq Runtime
Application

Groq Driver

Host CPU Groq Hardware
(GroqCard, GroqNode, GrogRack)
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Grog Runtime HW/SW Architecture

Host CPU and PCle Connection

Host CPU
PCle
Gen 4x16
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Grog Runtime HW/SW Architecture

Simplified Grog Runtime Diagram
- Groqg Assembler W
L 7

aa

Y

Y

Grog Compiler

Focus of

Compile Time | .. this talk
Runtime

Al Groq Runtime
Application

Groq Driver

Host CPU Groq Hardware
(GroqCard, GroqNode, GrogRack)
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INnteracting with Grog

Runtime as a Developer i




INnteracting with Grog Runtime as a Developer

Groqg runtimes available to developers

oroq

TSPRunner
Python
. >
Runtime API )
C++ Driver
User Space

© 2024 Groq, Inc. | Grog Al Workshop

GroqgCard

Hardware

C++ Runtime
API
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INnteracting with Grog Runtime as a Developer

Groqg runtimes available to developers

TSPRunner

Python

Runtime API 4

C++ Driver

GroqgCard

groq © 2024 Grogq, Inc. | Grog Al Workshop

User Space

Hardware

API
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INnteracting with Grog Runtime as a Developer

Groq runtimes split between Python and C++

TSPRunner

Python

Runtime API

groq © 2024 Grogq, Inc. | Grog Al Workshop

Python C++
v
C++ Driver
I __________ User Space
VFIO Driver
Kernel Space
""""" pcle 777
GrogCard Hardware

API
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INnteracting with Grog Runtime as a Developer

Ease of use oriented Groqg runtimes

TSPRunner
Runtime API 4 API

C++ Driver
I ______ User Space
VFIO Driver
Kernel Space
""""""""" PCle 777
Hardware
groqh © 2024 Grogq, Inc. | Grog Al Workshop G roqca rd Groqg Public 44




INnteracting with Grog Runtime as a Developer

Performance oriented Groq runtimes

TSPRunner

Performance

Python

: C++ Runtime
Runtime API ) API
C++ Driver
I ________ User Space

VFIO Driver

Kernel Space
""""""""" PCle 777
Hard
groqh © 2024 Grogq, Inc. | Grog Al Workshop G roqca rd ardware Groqg Public 45




Deeper Dive on Running
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Deeper Dive on Running Inferences on a GrogChip!

Moving Data between Host CPU and Groq LPU

Input Buf

Output Buf

Host Memory

groq © 2024 Grogq, Inc. | Grog Al Workshop

PCle
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Deeper Dive on Running Inferences on a GrogChip!

DMA descriptor maps host memory buffer

Input Buf

DMA descriptor

7D

groq © 2024 Grogq, Inc. | Grog Al Workshop

Output Buf

Host Memory

PCle
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Deeper Dive on Running Inferences on a GrogChip!

Driver writes descriptor address to PCle RX BAR

Input Buf

DMA descriptor

7D

groq © 2024 Grogq, Inc. | Grog Al Workshop

Output Buf

Host Memory

PCle
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Deeper Dive on Running Inferences on a GrogChip!

PCle block retrieves descriptor/underlying buffer data, fills FIFO

Input Buf

DMA descriptor

7D

groq © 2024 Grogq, Inc. | Grog Al Workshop

Output Buf

Host Memory

PCle
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Inferences on Grog LPU

PCle block retrieves descriptor/underlying buffer data, fills FIFO

Input Buf

DMA descriptor

7D

groq © 2024 Grogq, Inc. | Grog Al Workshop

Output Buf

Host Memory

PCle
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Deeper Dive on Running Inferences on a GrogChip!

I/O harness fills all of SRAM inputs

Input Buf

Output Buf

7D

Host Memory

groq © 2024 Grogq, Inc. | Grog Al Workshop

PCle
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Deeper Dive on Running Inferences on a GrogChip!

Moving Data between Host CPU and Groq LPU

Input Buf

DMA descriptor

7D

groq © 2024 Grogq, Inc. | Grog Al Workshop

Output Buf

Host Memory

PCle
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Deeper Dive on Running Inferences on a GrogChip!

Initiate core compute and PCle TX ICU reads vectors from SRAM and pushes to FIFO

Input Buf

DMA descriptor

7D

groq © 2024 Grogq, Inc. | Grog Al Workshop

Output Buf

Host Memory

PCle

O
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Deeper Dive on Running Inferences on a GrogChip!

Driver writes descriptor address to PCle TX BAR

Input Buf

DMA descriptor

Output Buf

Host Memory

groq © 2024 Grogq, Inc. | Grog Al Workshop

PCle
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Deeper Dive on Running Inferences on a GrogChip!

PCle block drains FIFO, writes results back to host memory

Input Buf

DMA descriptor

Output Buf

-7D

Host Memory

groq © 2024 Grogq, Inc. | Grog Al Workshop

PCle
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L LMs with Grog SRS EIEI SRS I

Aviv Weinstein
Systems Software Engineer
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LLMs: The next Revolution in Computing

Forbes
Exhibit 2: 5 days from launch ChatGPT reaches Tmn users vs 14 Salesforce Debuts Finstein Introducing Microsoft Dynamics 365 Copilot, the
~pT ~ P ke R S world's first copilot in both CRM and ERP, that
days for TikTok F{!*g@h”lmdmﬂm brings next-generation Al to every line of business
Daily unique visits to ChatGPT and cumulative TikTok downloads after SUSINESSES Var 6202 | G Lans U s Acatos o Pt
their launches Hon
[
3,500,000
e Daily Unique Visits (ChatGPT)* Cumulative TikTok Downloads™

3,000,000

2,500,000

2,000,000

1,500,000

The company also partnered with OpenAl to create a ChatGPT app for
Slack, which Salesforce owns.
1,000,000
Source: forbes.com
Today, we're announcing the next generation of Al product updates across our business applications
ortfolio, including the launch of the new Microsoft Dynamics 365 Copilot - providing interactive, Al-powered
500,000 CarMax drives business value with GPT35 St s s ncns — ’
0

Source: blogs.microsoft.com

Day1
Day2
Day3
Day4
Day5
Day6
Day7
Day8
Day9

Day10
Day 11
Day12
Day13
Day14
Day15

Source: BofA Global Research, *Similarweb, **SensorTower

BofA GLOBAL RESEARCH

groq" © 2024 Grogq, Inc. | Grog Al Workshop
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https://www.forbes.com/sites/richardnieva/2023/03/07/salesforce-einstein-gpt-slack/?sh=675b9b5328de
https://blogs.microsoft.com/blog/2023/03/06/introducing-microsoft-dynamics-365-copilot/

LLMs In Science

Rapid development of LLMs and related technologies

Groq offers fastest LLMs to date
LLMs are applicable for a wide range of scientific applications

Two possible approaches:
Use general LLMs to assist scientific method

Specialised LLMs encode sequences from chemistry, biology or

physics

Grog Public
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Why Grog LPUs are suitable for running LLMs

encoder
layer n-1 The large matrix multiplication operations are
effectively mapped to MXM
‘ Running LLMs is a serial problem - it requires
l generating the first 99 tokens before the 100th
attention one (auto-regressive behaviour). This requires
| a lot of weights loading which is accelerated
encoder L+ add & norm by LPU’s high SRAM bandwidth.
layer n l
feed forward
'
—  add & norm
encoder
layer n+1

groq" © 2024 Grogq, Inc. | Grog Al Workshop
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Grog LPUs connect to form one large Assembly Line

No switches required to connect LPUs
C2C between LPUs act like conveyor belts between them

Statically scheduled networking - no congestion, even under heavy load

groq © 2024 Grogq, Inc. | Grog Al Workshop Groq Public 61



How is this different from a GPU?
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GPU system - collection of GPUs and switches

WaH WaH
I

QiR
QilH
QiHG

WaH WaH
I

Qg

WaH WaH
I

Qip
Gk
QG

QilpG
Qb
QG

QCHHg

WaH WaH
I N

QUG

QipG
Qp
QG

QG
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intime

b
s
0
b

of model code, weights etc

N N
WaH WaH

bl
i
il

partitions

multiple

bEE
biie
bisise
bbbt

Qi

lume, GPUs iterate over

I N
WaH WaH

b

it
bt

Qi

GPUs scale largely in time, some in space (clustering)

For large compute vo
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Grog LPU scales largely in space as an assembly line

For large compute volume, LPUs partition model code across multiple LPUs to form an assembly line

g

groq © 2024 Grogq, Inc. | Grog Al Workshop Groqg Public 65




GPU

GPU cores and systems are “hub-and-spoke” architecture

GPUs scale largely in time, some in space (clustering)-GPUs iterate
over multiple partitions of model code, weights, etc. in time

Uses expensive & supply constrained components - HBMs,
interposer, switches

Inference performance (token/s/GPU & token/s/user) is limited
by HBM BW

Out-of-the-box compiler has poor HW utilization - requires
hand-coded kernels

HBM

HBM

LLM
I
. §

HBM

I I
HBM

groq © 2024 Grogq, Inc. | Grog Al Workshop

LPU

LPU and systems are programmable assembly line architecture

Groqg LPU scales largely in space as an assembly line - model
code, weights etc are mapped across multiple chips

Efficient assembly line arch is deterministic at clock granularity,
uses high BW SRAM for fast compute - no HBMs, interposer etc

Efficient assembly line enables high token/s &
token/s/user at lower $ & watts

Out-of-the-box compiler has good HW utilization
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Welcome to the token factory

LPUs tightly connected to form a highly efficient assembly line v/s multiple independent small GPU shops for same capacity

LLM
LPU LLM LLM LLM GPU s
B B ]

HBM
s s 3
~ SRAM ~ SRAM & SRAM -
5 g S < cache
o
=z compute
wn
>
=
~
"4
c
P compute
|
>
01 02 03 04 @5 =, ——
10 09 08 o7 06

HBM

LLM
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Groq LPU™
Inference Engine

Scale by
Design

You can build a car but in volume it's quicker and
in one location cheaper to use an assembly line

You can compute an
inference with a GPU that has a but
lot of external memory

at scale it's quicker and cheaper to
use an LPU Inference Engine

groq © 2024 Grogq, Inc. | Grog Al Workshop



General Grog LLM Development Flow

Modify PyTorch Model
Export ONNX Model

Convert ONNX Model
from fp32 to fp8/fp16
Decoder Partition

groq © 2024 Grogq, Inc. | Grog Al Workshop Groq Public



Llama-2 7B/2048

Optimized and available for the single GrogRack deployed at the ALCF Al Testbed

groq © 2024 Grogq, Inc. | Grog Al Workshop Groqg Public 70


https://docs.google.com/file/d/1tGGF9yrQ1tKszGllTEF_cDGrnMKWqcSb/preview
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Optimization with
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Christopher Culver
Software Engineer




Throughput
Optimization
with Grog™

AGENDA

Latency, throughput and scaling
Compiling small models for
throughput

Case studies with molecular
transformers

groq © 2024 Groq, Inc. | Grog Al Workshop
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Latency vs Throughput

Latency critical applications Throughput critical applications

0 10 20 30 40 50 60
CPU: 0.00s, gpu: 0.00s, grog: 0.00s

Advanced photon source, data processing off detector Computational fluid dynamics

o

Tokamak fusion reactor, real time control Predicting molecular properties

groq © 2024 Grogq, Inc. | Grog Al Workshop
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Scaling

Strong Scaling Weak Scaling
Fixed problem size Increase problem size with number of compute
Increasing number of compute resources resources

Strong Scaling Speedup

Weak Scaling Efficiency

—+— Real Efficiency
Ideal Efficiency

1024 ¢ 1
—+— Real speedup
512 Ideal speedup 0.9
256 0.8
128 + 0.7
a 64 | 30.6
= (=
o 32 gos
Q E
16} W o0.4
8 0.3
4+ 0.2
2k 0.1
1 L L 4 3 g g g + . d 0 L
1 2 4 8 16 32 64 128 256 512 1024 1 2

No of Processors

8

16 32 64
No of Processors

128 256 512 1024

Important: these assume a fixed implementation

groq" © 2024 Grogq, Inc. | Grog Al Workshop Image Credit: HPC Wiki
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Scaling Neural Networks with Grog Compiler

Optimize inferences per second (IPS) of model

Batch size
Number of cards A
Parallelization strategies | l
Inter op B C
Intra op
D
E

groq © 2024 Grogq, Inc. | Grog Al Workshop Groqg Public 76



Single chip all ops on the card

groq © 2024 Grogq, Inc. | Grog Al Workshop Groq Public 77



Compiler will find the best parallelization

]
-
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But may change with different batch, num cards
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Ccom pl |er expe r| ments Fixed model architecture:

Increasing Groq cards
ﬁ_{ — 9 4 H = I
—J L Y
—f — 9 —.
J
-l
]

Increasing batch size
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Setup

N=total LPUs you can allocate (1 node = 8 chips, 1 rack = 72 chips)
B=batch size

G=LPUs compiled for

L=latency

N B |inferences]

IPS =
> G L |s]
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Compiler Flags

Compiler topology
--multichip=TOPOLOGY_STRING
Within a node
DF_Al4_N_CHIP Nin 1248
Within a rack
RTO9_A14_N_CHIP N in16,24,32,40,48,56,64,72

Performance Statistics
--power-analysis
--save-stats

groq © 2024 Grogq, Inc. | Grog Al Workshop

Assembler flag

--topology=TOPOLOGY_STRING
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Compiler Output

Compilation statistics:
On-chip compute cycle count: 77636
On-chip compute latency: 0.086262 milliseconds
Throughput ignoring I0: 11592.560153 executions/sec
Throughput with perfectly overlapped I0 and compute: 11592.560153 executions/sec
Throughput with serialized I0 and compute: 11589.253097 executions/sec
Input transfer size: 320 Bytes
Input transfer time: 0.000012 milliseconds
Output transfer size: 320 Bytes
Output transfer time: 0.000012 milliseconds
Peak on-chip data memory usage: 82992 addresses (25.327148 MiB)
Number of operations in IR: 1651961 operations
Number of scheduled operations in IR: 1586760 operations
Average on-chip memory bandwidth utilization: 6795.258867 GB/s out of 47206.878662 GB/s which is 14.394637%
Number of same hemi LWB Reads on chip 0: 104312
Number of opposite hemi LWB Reads on chip 0: 47314

groq © 2024 Grogq, Inc. | Grog Al Workshop



Compiler Output

Power Analysis Chip Utilization Report (%

Distributor
Transposer
Permutor
Selector
C2C
Accumulator
LWB

Iw

ABC

MXM

un
N
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Molecular Language

Molecules are composed of atoms held together by chemical bonds, physically 3D objects 5

Neural network architectures ) ' [ j
GNN/Message passing o .
Convolutions Z s WL

Molecules can be represented with sequence of characters 0 \C

SMILES representation

Ethanol CH,CH,OH »CCO

Benzene C_H,
C1=CC=CC=C1 (double bonds)
clccceccl (ring structure)

Use transformers!

Grog Public 85
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S M | |— E S Tra h SfO r m e r Input: batch_size, tokens

Layer (type) Output Shape Param # Connected to
input_1 (InputLayer) [(None, 45)]

token_and_position_embeddi (None, 45, 128) 406656 ['input_1[0][0]"]
ng (TokenAndPositionEmbedd
ing)

transformer_block (Transfo (None, 45, 128) 1417984 [ 'token_and_position_embedding

rmerBlock) [e][e]",
"transformer_block[0][0]
"transformer_block[1][0]
'transformer_block[2][0]
"transformer_block[3][0]

i
dense_2 (Dense) 5899264 [ 'transformer_block[4][0]"']
dense_3 (Dense) 262400 ['dense_2[0][0]"]
dense_4 (Dense) 16448 ['dense _3[0][0]"]
dense_5 (Dense) ['dense_4[0][0]']

dense_6 (Dense) ['dense_5[0][0]"]

Total params: 8003809 (30.53 MB)

Molecular property prediction

groq © 2024 Groq, Inc. | Grog Al Workshop  High performance binding affinity prediction with a Transformer-based surrogate model Groqg Public 86



SMILES Transformer

Reshape
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SMILES Transformer

Strong Scaling

72000 A
. 71500 -
c
>3
o
)
2 71000 -
>
)
70500 A
70000 - —
—e
1 2 3 4 5 6 7 8

Number of Groq LPUs
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SMILES Transformer

batch=1, nchips=2 compile

Multichip Per Chip Stats
Peak memory usage on chip 0: 83216 addresses
Last compute cycle on chip 0: 70018
First C2C cycle on chip 0: -1
Last C2C cycle on chip O:

Peak memory usage on chip 1: 0 addresses
Last compute cycle on chip 1: -1

First C2C cycle on chip 1: -1

Last C2C cycle on chip 1:




SMILES Transformer

Weak Scaling
500000 1
400000 A
=
>
e}
300000 A
o
O
>
)
200000
100000 -
1 2 3 4 5 6 7 8

Number of Groq LPUs=Batch Size
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Maximum |IPS

106873 = 56978 28489

48583 = 24291

Batch Sisze

100642 = 50075 25037

1 2 4
Number of Groq LPUs

groq" © 2024 Grogq, Inc. | Grog Al Workshop

70722 | S53GI IS

cycles
109219
538954

72355
300782
101807
505452

70019

batch _size
2

8
1
4
2
8
1

num_chips

1
1
1
1
2
2
2

IPS 8chips
131818
106864

99478
95739
70706
56973
51398

Groq Public
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HIDRA

Drug structure
(Morgan Fingerprint)
512bits

H

IS
= --
»

Attention Attention l

module module |

¥

4592 genes

Gene expression

OroQ)  ©2024Groq,inc | Grog Alworkshop J. Chem. Inf. Model. 2021, 61, 8, 3858-3867 Grog Public 92



Drug_Input (InputLayer) [(None, 512)]

Drug_Dense Newl (Dense) (None, 128)

Drug_Input[0][0]

KEGG_GLYCOLYSIS_GLUCONEOGENESIS (None, 16)
KEGG_CITRATE_CYCLE_TCA_CYCLE_Dr (None, 8)

Drug RELU New2[0][0]
Drug_RELU New2[0][0]

KEGG_GLYCOLYSIS_GLUCONEOGENESIS (None, 16)
KEGG_CITRATE_CYCLE_TCA CYCLE Dr (None, 8)

KEGG_GLYCOLYSIS_GLUCONEQGENESIS (None, 76)

KEGG_GLYCOLYSIS_GLUCONEOGENESIS D
KEGG_CLTRATE_CYCLE_TCA_CYCLE Drug

KEGG_GLYCOLYSIS_GLUCONEQGENESIS_I
KEGG_GLYCOLYSIS_GLUCONEQGENESTSDr

KEGG_CITRATE_CYCLE_TCA_CYCLE Co (None, 38)

KEGG_CITRATE_CYCLE_TCA_CYCLE Inpu
KEGG_CLTRATE_CYCLE_TCA_CYCLEDrug_

Drug_effected Concatenate (Conc (None, 198)

groq © 2024 Grogq, Inc. | Grog Al Workshop

KEGG_GLYCOLYSIS_GLUCONEOGENESIS R
KEGG_CITRATE_CYCLE_TCA_CYCLE_RELU

Drug_Dense 1 (Dense) (None,

131328

Drfllg_Input[0][6]

Sample_Attention_Dense (Dense) (None,

37014

Drug_effected Concatenate[0][0]

Drug Batch 1 (BatchNormalizatio (None,

1024

Drug_Dense_1[0][0]

GeneSet_Concatenate (Concatenat (None,

0

KEGG_GLYCOLYSIS_GLUCONEOGENESIS R
KEGG_CITRATE_CYCLE_TCA_CYCLE_RELU

Sample_Attention_Sottmax (Activ (None,

Sample_Attention_Dense[0[0]

Drug RELU_1 (Activation) (None,

Drug_Batch_1[0][0]

Sample_Attention_Multiplied (Mu (None,

GeneSet_Concatenate[0][0]
Sample Attention Softmax[0][0]

Drug Dense 2 (Dense) (None,

Drug_RELU_1[0][0]

Sample Attention BatchNormalize (None,

Sample Attention Multiplied[0][0]

Total RELU (Activation)

Total_BatchNormalized[0][0]

Output (Dense)

Total_RELU[0][0]

Total params: 2,227,402

Grog Public
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MatMul
MatMul MatMul MatMul MatMul

KEGG_ABC_TRANSPORTERS_Input
KEGG_PRIMARY_BILE_ACID_BIOSYNTHESIS_Input KEGG_PRIMARY_IMMUNODEFICIENCY_Input KEGG_PRION_DISEASES_Input DIATED_OOCYTE_MATURATION_Input

e Concat Concat Concat Concat

MatMul MatMul | MatMul

8 8

Softmax Softmax
Softmax

Unsqueeze Unsqueeze Unsqueeze Unsqueeze Unsqueeze Unsqueeze Unsqueeze
Unsqueeze Unsqueeze

MatMul MatMul MatMul

MatMul

Squeeze Squeeze Squeeze Squeeze

Squeeze

Concat

© 2024 Groq, Inc. | Grog Al Workshop Groqg Public




HIDRA

v0.10.x SDK Strong Scaling
80000 +

70000 A

60000 -

50000 A

Cycle Count

40000

30000 A

1 2 3 4 5 6 7 8
Number of Groq LPUs
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HIDRA

v0.10.x SDK Weak Scaling
80000 -
70000 -
=
]
o
&)
" 60000 1
S
@)
50000 -
40000 -
0 10 20 30 40 50 60

Number of Groq LPUs=Batch Size
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HIDRA

vO.11 SDK Strong Scaling

45000 - T
40000 -
35000 -

30000 -

Cycle Count

25000 A

20000 A

15000 A

0 10 20 30 40 50 60 70
Number of Groq LPUs
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HIDRA

v0.11 SDK Weak Scaling
60000 -

55000 -
50000 -

45000 - T

Cycle Count

40000 A

35000 -

0 10 20 30 40 50 60 70
Number of Grogq LPUs=Batch Size
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Drug Response

with the IMPROVE project

Graph
Atoms are nodes
Bonds are edges

Physically motivated representation

C icative message passing neural network
Molecular graph representation

T

Self—at\ennon mechanism
A

SMILES

Fingerprint representation

Concatenate

—— stability score
[0.1]

Readout
Dense layer
I Human plasma

Flngerpnnl Molecular
feature  graph feature

Image Credit:

© 2024 Groq, Inc. | Grog Al Workshop

groq

Prediction Models

Attention
Atoms and bonds as a string

Encoding of molecule and its

properties
0 o]
cl c2
/0 cl H c

c ocuccc(@(&)czcccu(u:o)c(c)(c)c)cZ)cc1<
c ocuccc(cuu:o)clcc.cnwlclclclsncc1<
¢ »> occlecc (cNe (=0) B (c (o) clc) o) effi2) cc1<
B -~ el (<o) caccen(c(=0) c(c) (€) €) ecci<
B -~ [gErccBi@ic (=0) c2ccen(c(=0)c(c)fc) €) c2Pffe1<

0.6

0.4

Left: Jang, W.D. et al, PredPS: Attention-based graph neural network for predicting stability of compounds in human plasma.
Center: Bagal, V. et al, MolGPT: Molecular Generation Using a Transformer-Decoder Model
Right: Liu, P. et al, Improving prediction of phenotypic drug response on cancer cell lines using deep convolutional network

Drug ! i .
T IT #‘ _ﬁ::
EEENEEEEE N ]

Each row represents C,1,

Argonne &

NATIONAL LABORATORY

Convolutions

One hot encoding of atoms and
bonds

Feature pooling

Convolution/pooling/relu

Lo

=2,(,3,Nand) respectively  Convolution/pooling/relu

SR

C1=CC2=C(C3=C(C=CC=N3)C=C2)N=CI

Genetic Feature
Cell

Up to 10,000 predictions/s on Grog! I
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Grog and Scientific Applications

Natural Language  Anomaly Advancing CYBERSECURITY / INFOSEC
Processing (LLMs) Detection core technologies
related to Al, ML, US GOVERNMENT
O * and HPC
RESEARCH & SCIENCES
e e Optimizing

a broad range of FINANCIAL SERVICES

inference heavy
workloads ENTERPRISE COMMUNICATIONS

Linear Real-time
Algebra Series

groq © 2024 Grogq, Inc. | Grog Al Workshop Grog Public 100



X-Ray Detector Signal Processing Argonneo

NATIONAL LABORATORY

Next generation of x-ray sources will be over 100
times brighter

1 Tbps bandwidth off the detector chip
16-bit resolution 256x256 image

Processing this data enables
Faster time to observation
Focus on rare event

Codesign with FPGAs for real-time access to
detector data, avoid slow PCIE transfers

0’“"" ‘I.:!"" \’ 3

A"I)"',",: LR |

Advanced Photon Source at Argonne

groq © 2024 Grogq, Inc. | Grog Al Workshop Grog Public 101



X-Ray Physics Compression Models

Models to sift desired data from noisy X-ray diffraction signals

PtychoNN: Deep learning of ptychographic imaging

BragaNN: Bragg peak finding

Cherukara et al. hifps:

https:

Two-headed encoder-decoder network
Predict amplitude & phase of incoming
photon

Solves inverse problem

64x64x1

16x16x64

64x64xl  gax64x32

32x32x32

64x64x1

- Max pooling
- Upsampling
- Convolution

32x32x32

pubs.aip.org/aip/apl/article/117/4/044103/39570 /A -enabled-high-resolution-scanning-coherent

dthub, com/mcherukara/PtychoNN2tab=readme-ov-fils

groq

© 2024 Groq, Inc. | Grog Al Workshop

Convolutional neural network
Predicts peak position
Traditional algorithms take weeks of HPC

Non-local
Attention
block

64 Convolution Neural Network
eature map: (feature extraction)
Neurons
1
relu
9 w/0
padding  Input patch
Single Channel
9
64 32 8 4
feature m feature m feature m
ature map feature maps eature maps eature maps
3x3 3x3
20
9 relu 7 relu
5 relu 5
w/o W/O w/
9 padding 7 adding 5 padding 5
et al. hittps://arxiv.org/ab: 008.08198 https://github.com/lzhengchun/BraggN2tab=read £il

Relu
activation
&
Neurons',
| Linear
% activation
\ ‘.«
2%
Neurons
Al
Groq Public

Fully connected Neural Network
32

¥, 2)
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https://github.com/mcherukara/PtychoNN?tab=readme-ov-file
https://github.com/lzhengchun/BraggNN?tab=readme-ov-file
https://pubs.aip.org/aip/apl/article/117/4/044103/39570/AI-enabled-high-resolution-scanning-coherent
https://github.com/mcherukara/PtychoNN?tab=readme-ov-file
https://arxiv.org/abs/2008.08198
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INtro to QUBO

What is QUBO?

QUBO - Quadratic Unconstrained Binary Optimization ¥ = —95%1 — 322 — 823 — 6x4 +4x122 + 82123 + 22123 + 102374
e Mathematical framework for solving optimization -5 4 8 0 1
problems 0 -3 2 0 To
T1 T2 T3 Ty) X X
: . (21 22 @3 ) 0 0 -8 10 3
e Involves binary variables 0
4

0 0 —6 T
e Quadratic objective function expresses problem’s
objectives and constraints

Goal is to minimizey = X' « Q « X'where x is a vector of
binary decision variables and Q is a square matrix of
constants
e |t'scommon to assume that the Q matrix is
symmetric or in upper/lower triangular form
which can be assumed without loss of generality

groq © 2024 Grogq, Inc. | Grog Al Workshop Groq Public



The concept of the SB solver

On the LPU (+ CPU oracle)
On the HOST CPU server

e Simulated bifurcation
e providing feedback \

) for the driver Simulated bifurcation —

(d) Rack \

Driver

e cvolutionary
e machine learning

Simulated bifurcation ~—_
govern the phase space Multiple instances of
of the SB engines local search SB engines /

i

Simulated bifurcation

How big a QUBO problem fits the chips?

Single LPU: 9K x 9K

Use cases:
e Portfolio optimization

LPU rack: 72K x 72K e Traffic routes

LPU node: 25K x 25K

10 LPU racks: 225K x 225K

groq" © 2024 Grogq, Inc. | Grog Al Workshop Groq Public



Accelerating Drug Discovery

Performance enables pharma / bio human innovation

CANDIDATE TESTING THROUGHPUT

400.0
RELATIVE

300.0 PERFORMANCE
Higher
: .
IS Better.
% Baselined to
g Nvidia V100, FP32

100.0

1.0X 1.7X
0.0

Nvidia V100, FP32 Nvidia A100, FP32 GrogCard™ 1, GroqCard™ 1,
FP32 FP16

GroqCard1 delivers >300x better throughput for drug discovery vs existing
GPU-based competitor reducing the time-to-solution from days to minutes!

"~ 'As measured at the host across 31 unique model inferences, at batch size 512, with
groq ©2024 Grog, Inc. | Grog Al Workshop 5 800 batches per run 9

Argonne &

NATIONAL LABORATORY

Groq Advantages

A

(.

Accuracy with
lower precision

T

Large on-chip
memory
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Cyber security

Publicly disclosed customer & partners

Excerpts
US Army Validation
Report Summary

A rgo n n e é @ With-additional variables or larger datasets, the Entanglement/Groq capability

NATIONAL LABORATORY )
ENTANGLEMENT

OAK RIDGE i
%National Laboratory @ Iq t IN-Q-TELw Optimization (QUBO) problems. Previous AAG efforts showed the ability to detect
120,000 inferences per second. This was the metric used as the benchmark and
= ms
¢P» Bittvvare

OneNano amolex company

Groq is also currently working with

(ﬂOﬂ-pU bl I?ly d ISC|OSGd) customers from Within six months Entanglement was able to achieve an anomaly detection rate of
the f°||°W|ng ma rketS: 72,000,000 inferences per second and demonstrated the potential to achieve

. . . 120,000,000 inferences per second across a wide domain of data processin
Enterprise Web Communications P 3 2

Large-scale Banking Provider
Automotive Manufacturer
Hyperscalers

systems.
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XTX Acceleration

Build fast applications from tall and skinny matrix operations

Library to build large scale physics and data-science applications:

Express applications as multiplication of tall and skinny matrix
to give large performance boost

Typical matrix sizes (PxN):10k x 1B to 100k x 10B

API to easily compose applications out of modular, high
performance building blocks which run on GrogChip
processors or CPUs

API supports scaling from a single GroqChip to multiple racks

Application areas:

Finance: correlation

Physics: quantum error mitigation

Data science: principal component analysis, multi-linear
regression

groq" © 2024 Grogq, Inc. | Grog Al Workshop

P | X7 X

C/C++

XX

[P

// Calculate covairance on two nodes with four tsps per

node

calculate_covariance_tsp(15000, 2, 4, inputs, xtx_results,

F32, xtx_iop_dir, nodes, config);

// Collect covariance result on node @ for eigenvectors

sum_batch(xtx_results, num_nodes, eigenvector_in, config);

// Calculate first 3 largest eigenvectors on node @

eigenvectors_cpu(3, eigenvector_in, eigenvector_re-

sults[@], nodes[@], config);

// Send eigenvectors to node 1

send_batch(eigenvector_results[@], eigenvector_results[1],

config) ;

// Project components onto original data

multiply batched_matrix_fixed_vector_tsp(15000, 3, 4, mat-
mul_iop_dir, inputs, eigenvector_results, matmul_results,

nodes, config);

Grog Public
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Throughput
Optimization with
Grog™

Recap

Model architectures dictate
parallelization strategies
Deterministic hardware means
compiler experiments tell best
configuration

groq © 2024 Grogq, Inc. | Grog Al Workshop Grog Public 108



groq

Thank You!
cculver@grog.com




What is next? SRS EIEI SRS I
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What is next?

AGENDA

Systems Roadmap and Capability
Chip Determinism unlocks LPU
Superpower

More Moore Scaling Benefits of
Determinism

groq © 2024 Groq, Inc. | Grog Al Workshop
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LLMs are

Getting Larger

This poses a problem for GPUs

Accuracy improves as model = Large Language Model
sizes are increasing

Memory bound and _

need fast memory access

Need inference to be done in
reasonable time and at reasonable cost

groq © 2024 Grogq, Inc. | Grog Al Workshop
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GPUs scale largely in time, some in space (clustering)

For large compute volume, GPUs iterate over multiple partitions of model code, weights etc in time

Most of GPU time/energy spent paging weights & KV
cache infout of HBM

Highly Inefficient - High Cost / Token

Low HBM bandwidth 1/100X of on-chip SRAM

High HBM access latency (300ns-1300ns)

High HBM access power (4-6 pl/bit for R/\W)

Need high-batch size to saturate compute
(100s-1000s)

Poor GPU-to-GPU collectives with asynchronous
communication (through switches) and high batch
sizes results in high latency

Expensive BOM & Supply Concerns with HBM, exotic
packaging, network switches, etc.

groq © 2024 Grogq, Inc. | Grog Al Workshop Groqg Public 113



Grog LPU scales largely in space as an assembly line

For large compute volume, LPUs partition model code across multiple chips to form an assembly line

B
:
< { [N
_
< | MR
“&
< || RAn0n:
8
| (AN
SE

TN
LT
T NRAIm

[T

groq © 2024 Grogq, Inc. | Grog Al Workshop

S X X X «

Break through the memory wall by computing on
weights & KV cache from SRAM

Highly efficient - Lowest Cost / Token

100X higher bandwidth than HBM
Lowest SRAM access latency (<5 ns)
Lowest SRAM power (0.3 pJ/bit for R/W)
Saturate compute at low batch sizes

Efficient LPU-to-LPU collectives due to deterministic
communication and low batch size

Single chip module, no HBMs, no expensive external
switches » abundant supply
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T Same Software
Compiles Across All Platforms

Silicon

Generation 1:[] 1:L1 2:[] 2: H
LPU™ 8 x V1-LPU™ 32 x V1-LPU™ 32 x V2-LPU™ 336 x V2-LPU™
Accelerators

Per Chassis

Single 264 x LPU™ 4,128 x LPU 40,960 x LPU 680,064 x LPU
Core Cluster (4 Racks) (33 Racks) (320 Racks) (675 Racks)

groq © 2024 Grogq, In¢. EGeogAISRANMdooto fit 250+ Llama-2 70B models Groqg Public 115



GROQ Enables

Software & Hardware Co-optimization

v ] [ o ]
> TGE T HE s ]
i = .
E 10 E GROQ™ COMPILER ENABLES
s 4 = o,
e &I Hardware & Software ss| 2 8 2 sl
E = ; ; 5 ° J ® M§\0 (>,<) - §7” aM (>,<’ ‘?M
:E oS A Co-optimization & (B &
§ % b5 s i:'; L
£ o
) 4
v ] [ o ]
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GROQ® COMPILER

Enables Performance, Power, Ldi/dt, & Thermal Profiling

GroqChip™ Functional Units Power Over Time
= VXM == MEM == VXM SXM

d 1 ’_‘ i
A *1[;1- —
b b 3

- F i S

=y [} [1T] & > w

Co i HeRge >IRERE 3

s SHIT R ¢)

= RIE 21 B

X = o (o} B X

c B g =

- | £ £ a =

= & = = & =
@ @

TIME(ns)

Groq Compiler can profile 100% deterministic power, temp, di/dt down to a “ns”
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GROQ® COMPILER

Enables Performance, Power, Ldi/dt & Thermal Control

GroqChip™ Total Power Over Time
== original == 75% power cap 50% power cap == 25% power cap

25% peak power reduction

/ ©@0.2% perf loss
Data Flow ]

50% peak power reduction
/ @6.9% perf loss

POWER (W)

75% peak pwr reduction
@39% perf loss

Matrix (MXM)
Memory(MEM)
Memory(MEM)
Matrix (MXM)

~-Shift/-Permute(SXM)-

Instruction Dispatch TIME(ns)

Groq Compiler controls LPU power, temp, di/dt down to a “ns” - key for reliability & compute density (2D/3DIC)
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GROQ COMPILER ENABLES

Ldi/dt Control

1.00X | — original <— 100% peak power
—— 50% peak power cap + 50% Ldi/dt cap
0.75X —— 25% peak power cap + 15% Ldi/dt cap 50% peak power
: /
% 0.50X
a
5. | 0.25X
E — —
o 0 > p3 <=
> qEEEET 1T} =
X X b3 b3 X
by | JNERE > b3 0.73
2 N g g o 0.72 1 Reducing wasted power
= a - 0.71 -
O 3 Q () ©
= & = = = 0.70
't E 0.69 -
u;’ a 0.68
1 g 0.67 -
Instruction Dispatch 0.66
8§ P aaa 0.65
0.64
0.63 :

TIME
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GROQ™ COMPILER ENABLES

Thermal Optimization for 3D Logic-on-Logic Stacking

Deterministic Functional Units Scheduling Allows Complementary -
. . . Op
Power Consumption across two or more dies in a 3DIC Top / -
Ratl Bottom

B Top TSP [ Bottom TSP

r Workload scheduled across functional units with
awareness of location and thermal impact

e Multiple 3DIC share the same thermal envelope.

e Each chip can allocate a power budget from the
total budget pool while maintaining thermal
envelope

67%

POWER
e

| Top Die

A

e PVT monitors used for calibration before
33% deployment, and act as guardrails if the compiler
mis-predicts power consumption after deployment

Bottom Die

v

0 10 20 30
TIME
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Al Model Growth

is Accelerating Improving Time

to Market (TTM)

Enabling Agility

& Customization , :
Moore's Law Is

Slowing Down
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SCAITABLE .
Silicon Tiler For Fast

Time-to-market

Multiple Interconnect Options

C2C for high-radix interconnect
UCle for MCM connected sidecar accelerator
Scalable SXM for BW to/from 10 and Compute

Scalable compute architecture

SRAM scalable capacity
VXM with scalable number of PEs
MXM with scalable matrix sizes

groq © 2024 Grogq, Inc. | Grog Al Workshop

10 Options

10=SerDes | - | |02 8erDes |

10 = SerDes . 40O = SerDes

-
Scalable SRAM

A

Scalable Compute
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Next-gen Silicon Compiler

Enabling Grog Silicon Compiler & Ecosystem

Scalable SRAM

(220-440MiB)
with 3D SRAM
extension
Scalable Compute
16 SL: 256x256
20 SL:, 320x320
24 SL: 384x384
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LPU Core

Chiplet
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Design Space Exploration (DSE)

Al Assisted Exploration & Design

Model Design Ideal Performance
Portfolio Constraints -------- . rom-o-- - Candidates & Sl Costs
POWER LIMIT . :
TOTAL COST Groq SI A
Tiler —
PROCESS I
TECHNOLOGY
SUPPORTED B
NUMERICS Groq™
) Compiler -
: c

_______________________________________

Enabling highly productive and scalable discovery at The Speed of Software
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Atlas 3D plot
9roq Atlas Explorer

Welcome to Atlas Explorer 4500

Explore the performance of different variants of the
Groq hardware architecture on a variety of state-of-the-
art ML models. The 3D plot is interactive.

4000
Cost Function
Fully Pipelined IPS -
Plot axes: 3500
X: | VectorLength ~ Y-  DRAM(GB/s) ~
Design Space
Models 3000
I x | efficientnet_b1 -
[ ] HW Config
Vector Size 2500
128 256 320 512
DRAM (GB/s)
a2
128 256 460 819 1075 [JFilter by constraints [ View competition performance
MXM Planes
Table of Results (80/80 found in cache)
2
Marnory Time Zonss Status model vector_size mem_num_tzs_per_hem: dram_gigabytes_per_: sram bytes latency
Cached efficientnet bl 128 5 128 41943040 802412
567 89
Cached efficientnet_bl 128 6 128 50331648 681764
Permuters
Cached efficientnet_bl 128 7 128 58720256 649827
2 Cached efficientnet bl 128 8 128 67108864 619676
Shifters
Cached efficientnet_bl 128 5 256 41943040 735194
5 2 6 Cached efficientnet bl 128 6 256 50331648 625305
VXM Ranks =,
Cached efficientnet_bl 128 7 256 58720256 585067
4 Cached efficientnet_bl 128 8 256 67108864 550147
Cached efficientnet bl 128 5 460 41943040 709181
Constraints Cached efficientnet bl 128 6 460 50331648 600544
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http://127.0.0.1:8050/

Workload to Silicon

Driving Time-to-market Improvement

Silicon Design Cycle Improvement

Design Space

Exploration & (P2 Y g— 18 Months

Silicon Tiler Grog Automated Conventional
TTM Improvements
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Data Center
Reliability
Approaching
Automotive

Large Al models
train on >100,000 Al SoCs

Silent Data
Corruption can have
>30% performance impact

Need a high reliability,
testable, predictable, and
reproducible hardware
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Cores that don’t count

Peter H. Hochschild Rama Govindaraju David E. Culler
Paul Turner Parthasarathy Amin Vahdat
Jeffrey C. Mogul Ranganathan Google
Google Google Sunnyvale, CA, US
Sunnyvale, CA, US Sunnyvale, CA, US
Abstract M, USA. ACM, New York, NY, USA, 8 pages. https://doi.org/10.

We are accustomed to thinking of computers as fail-stop, es-
pecially the cores that exccute instructions, and most system
software implicitly relics on that assumption. During most of
the VLSI era, processors that passed manufacturing tests and
were operated within specifications have insulated us from
this fiction. As fabrication pushes towards smaller feature
sizes and more claborate computational structures, and as
i y ilicon pairings are intro-
duced to improve performance, we have observed cphemeral
computational errors that were not detected during manu-
facturing tests. These defects cannot always be mitigated by
techniques such as microcode updates, and may be correlated
to specific components within the processor, allowing small
code changes to effect large shifts in reliability. Worse, these
failures are often “silent” — the only symptom is an crroncous
computation.

‘We refer to a core that develops such behavior as “mercu-
rial”" Mercurial cores are extremely rare, but in a large fleet
of servers we can observe the disruption they cause, often
enough to see them as a distinct problem — one that will re-
quire collaboration between hardware designers, processor
vendors, and systems software architects.

“This paper is & call-to-action for a new focus in systems re-
search; we speculate about several software-based approaches
to mercurial cores, ranging from better detection and isolat-
ing mechanisms, to methods for tolerating the silent data
corruption they cause.
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1 Introduction

Imagine you are running a massive-scale data-analysis pipeline
in production, and one day it starts to give you wrong answers
— somewhere in the pipeline, a class of computations are yield-
ing cormupt results. Investigation fingers a surprising cause: an
innocuous change to a low-level library. The change itself was
«correct, but it caused servers to make heavier use of otherwise
rarcly-used instructions. Morcover, only a small subset of the
server machines are repeatedly responsible for the errors.

This happened to us at Google. Deeper investigation re-
vealed that these instructions malfunctioned due to manu-
facturing defects, in a way that could only be detected by
checking the results of these instructions against the expected
results; these are “silent” corrupt execution errors, or CEEs.
‘Wider investigation found multiple different kinds of CEEs:
that the detected incidence is much higher than software engi-
neers expect; that they are not just incremental increases in
the background rate of hardware errors; that these can mani-
fest long after initial installation; and that they typically afflict
specific cores on multi-core CPUs, rather than the entire chip.
‘We refer to these cores as “mercunial.”

Because CEEs may be correlated with specific execution
units within a core, they cxpose us to large risks appearing
suddenly and unpredictably for several reasons, including
seemingly-minor software changes. Hyperscalers have a re-
sponsibility to customers to protect them against such risks.
For business reasons, we arc unable to reveal exact CEE rates,
but we observe on the order of a few mercurial cores per
several thousand machines — similar to the rate reported by
Faccbook [8]. The problem is serious cnough for us to have
applied many engincer-decades to it.

While we have long known that storage devices and net-
works can corrupt data at rest or in transit, we are accustomed
to thinking of processors as fail-stop. VLSI has always de-
pended on sophisticated manufacturing testing to detect def
tive chips. When defects escaped, or manifested with aging,
they were assumed to become fail-stop or at least fail-noisy:
triggering machine-checks or giving wrong answers for many
kinds of instructions. When truly silent failures occurred, they
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Resilient

Language Processing
Unit™ Accelerator

Interconnect resilience
Low-BER FEC enabling 99.999% uptime

Redundant C2Cs wired at the System Level
Bad C2C lanes bypassed in system

Compute and memory resilience

10 Options

MXM checksum for SDC mitigation

Scalable Compute

Detecting in compute errors

SRAM / Interconnect ECC protection

Repairable for yield and quality improvements

Redundant SLs for improved yield/reliability 10 = SerDes - 40 = SerDes -

-
Scalable SRAM
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