
© 2024 Groq, Inc. | Groq AI Workshop Groq Public

Groq AI Workshop
ALCF AI Testbed
June 2024

© 2024 Groq, Inc. | Groq AI Workshop Groq Public

Agenda - Day 1
Session Description Length Speaker

Intro to ALCF Introduction to the Argonne Leadership Computing
Facility AI Testbed.

5 mins ALCF Staff

Welcome to Groq Introduction to the AI/ML space, who we are, and
applications that can leverage Groq for inference.

5 mins Jonathan Ross, CEO & Founder

Groq Language
Processing Unit (LPU)™
Architecture

Deep dive on the Groq Language Processing Unit™
(LPU) tensor streaming architecture, including in-depth
explanations on each module of the chip.

45 mins Andrew Bitar, Principal Compiler
Engineer & Manager

Accessing GroqRack™
at ALCF AI Testbed How to access GroqRack. 30 mins ALCF Staff

15 MINUTE BREAK 🚀

Porting Models with
GroqFlow

Step-by-step walkthrough of model porting with
GroqFlow for execution on GroqRack (including best
practices).

60 mins Sanjif Shanmugavelu, Software
Engineer

Benchmarking Models
with MLAgility How to benchmark multiple models with MLAgility. 20 mins Sanjif Shanmugavelu, Software

Engineer

2

© 2024 Groq, Inc. | Groq AI Workshop Groq Public

Welcome to Groq

Jonathan Ross
Founder & CEO

3

© 2024 Groq, Inc. | Groq AI Workshop Groq Public 4

https://docs.google.com/file/d/1HsqW2nrawpVrPK68z3r3beolIPVOOV8Z/preview

© 2024 Groq, Inc. | Groq AI Workshop Groq Public 5

Developer Community

15,000 + developers

https://www.discord.gg/groq

© 2024 Groq, Inc. | Groq AI Workshop Groq Public

Groq Language
Processing Unit™ (LPU)
Architecture

Andrew Bitar
Principal Compiler Engineer & Manager

6

© 2024 Groq, Inc. | Groq AI Workshop Groq Public

Groq LPU
Architecture

7

AGENDA

1. Architecture Overview

2. Key Functional Units

3. Scaling to 1000s of Groq LPUs

© 2024 Groq, Inc. | Groq AI Workshop Groq Public

GroqChip™

The purpose-built
Language Processing
Unit™ Inference Engine

GroqNode™

GroqCard™

GroqRack™

8

Dell Servers

☰ EXCEPTIONAL.

at sequential processing. The LPU™ Inference Engine is

designed to scale and is more power-efficient, with greater

performance, than a GPU for AI applications like LLMs.

© 2024 Groq, Inc. | Groq AI Workshop Groq Public

GroqChip™

The purpose-built
Language Processing
Unit™ Inference Engine

GroqNode™

GroqCard™

GroqRack™

9

Dell Servers

☰ EXCEPTIONAL.

at sequential processing. The LPU™ Inference Engine is

designed to scale and is more power-efficient, with greater

performance, than a GPU for AI applications like LLMs.

© 2024 Groq, Inc. | Groq AI Workshop Groq Public

Groq
Simplifies
Compute

10

SIMPLIFIED
Deterministic & predictable execution

Automated kernel-less compilation
Lower latency

Higher efficiency at scale

Language Processing Unit
(LPU)

Graphics Processor
(GPU)

COMPLEX
Non-deterministic execution

Manual kernel-based compilation
Higher latency
Higher costs

© 2024 Groq, Inc. | Groq AI Workshop Groq Public 11

The Missing Middle

Algorithms

Dataflow
dominated

Statically predictable set
of executed operations

Highly-parallel
vector operations

Hardware

High-density compute
using SIMD

Less silicon area spent
on re-ordering and
speculation

More memory
bandwidth

Compilers

Remain a challenge

Reliant on hand-tuned
libraries

Fragmented front-end
ecosystem

Require iterative
hardware profiling

✔ PREDICTABLE ✖ UNPREDICTABLE

Presented at Crossroads 3D-FPGA Academic Research Center - December 2022

© 2024 Groq, Inc. | Groq AI Workshop Groq Public

Networking
480 GB/s bandwidth
Extensible network scalability
Multiple topologies

Data Switch
Shift, Transpose, Permuter for
improved data movement and
data reshapes

Instruction Control
Multiple instruction queues for
instruction parallelism

SRAM Memory
Massive concurrency

80 TB/s of BW
230MB capacity

Stride insensitive

Groq TruePoint™ Matrix
4x Engines

750 TOP/s int8
188 TFLOP/s fp16

320x320 fused dot product

Programmable
Vector Units

5,120 Vector ALUs for
high performance

12

Groq LPU Overview

© 2024 Groq, Inc. | Groq AI Workshop Groq Public 13

Groq LPU Building Blocks

SIMD Unit

Instruction
Dispatch

32
0

-e
le

m
en

t
ve

ct
or

© 2024 Groq, Inc. | Groq AI Workshop Groq Public 14

Groq LPU Building Blocks

Build different types of specialized SIMD units

MXM
Matrix-Vector /

Matrix-Matrix Multiply

VXM
Vector-Vector

Operations

SXM
Data Reshapes

MEM
On-chip SRAM

© 2024 Groq, Inc. | Groq AI Workshop Groq Public 15

Groq LPU Building Blocks

Lay out SIMD units across chip area

MXM VXMSXM MEM MEM SXM MXM

© 2024 Groq, Inc. | Groq AI Workshop Groq Public 16

Groq LPU Building Blocks

Synchronized instruction dispatch across all SIMD units for lockstep execution

Instruction Dispatch

Instruction
Flow

144 Instruction Dispatch Paths

© 2024 Groq, Inc. | Groq AI Workshop Groq Public 17

Groq LPU Building Blocks

High-bandwidth “Stream Registers” for passing data between units

Data Flow

Data Flow

144 Instruction Dispatch Paths

Instruction
Flow

Instruction Dispatch

© 2024 Groq, Inc. | Groq AI Workshop Groq Public 18

Empowering Groq™ Compiler

© 2024 Groq, Inc. | Groq AI Workshop Groq Public 19

Architecture Empowering Software

Software-controlled memory

No dynamic hardware caching

■ Compiler aware of all data locations
at any given point in time

Flat memory hierarchy
(no L1, L2, L3, etc)

■ Memory exposed to software as a
set of physical banks that are
directly addressed

Large on-chip memory capacity (220
MiB) at very high-bandwidth (80 TBps)

■ Achieves high compute efficiency
even at low operational intensity

M
X

M

SX
M MEM

[88 SRAM banks]

V
X

M MEM
[88 SRAM banks]

SX
M

M
X

M

© 2024 Groq, Inc. | Groq AI Workshop Groq Public 20

Architecture Empowering Software

Lockstep execution of Functional Units

Compiler empowered to perform
cycle-accurate instruction scheduling

■ Synchronous “threads”

■ One instruction issued per cycle at each dispatch path

Little hardware control needed for managing
instruction execution

■ < 3% area overhead for instruction dispatch logic

M3

M2

M1

M0

V3

V2

V1

V0

S3

S2

S1

S0

m3

m2

m1

m0

© 2024 Groq, Inc. | Groq AI Workshop Groq Public 21

Architecture Empowering Software

Simple, one-dimensional interconnect for inter-FU communication

Compiler can quickly reason about all data movement between FUs

■ Eastward and westward paths made up of arrays of “stream registers”

■ Stream register = one-cycle hop

No arbiters / queues = software can easily reason about exact data movement without simulation

Travel time calculation as simple as a single add/subtract

Stream Register = 1 hop

Eastward Stream
Register Path

Westward Stream
Register Path

© 2024 Groq, Inc. | Groq AI Workshop Groq Public 22

Power of Data Orchestration
Given to Groq Compiler

© 2024 Groq, Inc. | Groq AI Workshop Groq Public 23

Groq LPU Functional Units

© 2024 Groq, Inc. | Groq AI Workshop Groq Public

SXM

Spatial pipeline processing
Simple tensor instruction
set architecture

Stream programming
of massive SIMD,
concurrent streams

Large on-chip
memory
bandwidth

Deterministic, predictable
performance scales to
multi-chip

M
at

ri
x

M
u

lt
ip

ly
 U

n
it

M
at

ri
x

M
u

lt
ip

ly
 U

n
it

Ve
ct

or
 U

n
it

M
em

or
y

M
em

or
y

VXM MXMMXM MEM MEM

f(x) gemm

SXM

x.T

24

Tensor Streaming Dataflow

© 2024 Groq, Inc. | Groq AI Workshop Groq Public

SXM

GroqChip™ v1

MXM: Matrix Multiply Engines

VXM MXMMXM MEM MEMSXM

320B x 320B dot product
Loads 320B x16 in 20 cycles
20 cycle execution
Fully pipelined, N

Int8 & float16
Full precision expansion
32-bit accumulate

Used Independently
or together

Numeric
Mode Size

Supported
Density

Result
Tensor

int8 [N, 320] x [320, 320] Two per MXM int32

float16 [N, 320] x [160, 320] One per MXM float32

25

West

0

1

East

2

3

© 2024 Groq, Inc. | Groq AI Workshop Groq Public

SXMVXM MXMMXM MEM MEMSXM

Dataflow begins with memory
Read onto Stream Tensor

Many concurrent streams
are supported in
programming model

VXM provides a flexible
and programmable fabric
for Compute

Compute occurs on data
locality of passing Stream Tensor

MEM bandwidth supports
high concurrency

MatMul Dist Accum Add ReLu Cast

26

GroqChip™ v1

VXM: Vector Execution Module

© 2024 Groq, Inc. | Groq AI Workshop Groq Public

SXM MXM

SXM

GroqChip™ v1

SXM: Switch eXecution Module

Swiss army knife for data manipulation &
Intra-vector byte operations

Distributor: 4 per hemisphere perform
unto mapping of input + mask to output
stream within a 16 byte superlane

Transposer: 2 per hemisphere
perform intra-superlane transpose
over 16 vectors for 20 superlanes

Permuter/Shifter: arbitrary mapping of
input + mask, shuffling between 320B
vector elements - used for data
transforms like pads/reshapes

Shift, Rotate, Distribute, Permute,
Transpose, Transport to SuperLanes

SXM VXMMXM MEM MEM

27

3
43 43 41 SE

L

P
E

R
M

TR
P

4
0

D
ST 39 TX 38

4 5 R
X

OR

C2C IO

© 2024 Groq, Inc. | Groq AI Workshop Groq Public

88 independent MEM slices with 8192
addresses (220MiB) each arranged into
quad timing groups

A read from a single MEM slice creates a 320 Byte stream;
a write terminates a stream

Group MEM slices for multi-dimensional tensors or
multi-byte data types

Can read and write one physical stream (vector) per cycle,
from 2 banks; Interfaces the full 64 stream bandwidth @ 80
TBps

28

GroqChip™ v1

MEM: On-Chip SRAM

© 2024 Groq, Inc. | Groq AI Workshop Groq Public 29

Scaling to 1000s of Groq
LPUs

© 2024 Groq, Inc. | Groq AI Workshop Groq Public

GroqChip™

The purpose-built
Language Processing
Unit™ Inference Engine

GroqNode™

GroqCard™

GroqRack™

30

Dell Servers

☰ EXCEPTIONAL.

at sequential processing. The LPU™ Inference Engine is

designed to scale and is more power-efficient, with greater

performance, than a GPU for AI applications like LLMs.

© 2024 Groq, Inc. | Groq AI Workshop Groq Public 31

Software-Scheduled Network
Synchronous Chip-to-Chip communication

Chip-to-Chip (C2C) protocol enables
synchronous communication across all LPUs in
a network

■ Clock drift across LPUs is accounted for
deterministically

Each LPU acts as both Processor + Router

■ Compiler schedules network packets as
part of programs loaded onto each LPU
in the system

No adaptive routing / congestion
sensing needed

■ Compiler knows exact cycle data
should be sent from one LPU and
received at another

Read(X) X

DEST LPU

Recv(X)

SOURCE LPU

Send(X)

Software-Scheduled Direct Network

X

Local
SRAM

Memory

Use(X)

cycle Ncycle N+L

© 2024 Groq, Inc. | Groq AI Workshop Groq Public

Deterministic Adaptive Routing

32

Conventional Network

■ Commonly done based on
network backpressure

■ Reactive approach makes the
routing decision difficult, increases latency, and
increases hardware complexity

■ Network latency is unpredictable

Software-scheduled Network

■ Avoids congestion
■ Enables maintaining a deterministic LPU

architecture to scale to a multi-node
deterministic network execution

A B

C D

Traditional
Non-deterministic

Network

backpressure
2

3

Re-route

A B

C D

Software-scheduled
Network

1

© 2024 Groq, Inc. | Groq AI Workshop Groq Public

LO
C

A
L

TO
P

O
LO

G
Y

G
LO

B
A

L
TO

P
O

LO
G

Y

33

Low-diameter Network
Minimize the number of hops in the network

The total observed latency and variance increases
with the number of hops in the network

Dragonfly is a hierarchical topology that
minimizes the number of hops taken

■ Local group topology
■ All-to-all global topology

Exploits packaging locality

0

7

6

5 4

2

3

1

GROQ
CARD

NODE

LPUs within the node
with all-to-all connections

0

7

6

5 4

2

3

1

SPARE

=

SPARE

NODE 1

NODE 2

NODE 3

NODE 4

NODE 5

NODE 6

NODE 7

NODE 8

32 links
cross
bisection

© 2024 Groq, Inc. | Groq AI Workshop Groq Public

AllReduce Comparison Results

34

Groq collective communication outperforms
state-of-the-art collective AllReduce

Groq RealScale saturates network bandwidth at
common message sizes

■ Eliminates the need for message aggregation

When normalized, Groq V1 card matches the
bandwidth at large tensor size while significantly
improving bandwidth at intermediate tensor size

■ Comparison made with 8 GPU A100
system with NCCL

■ A100 system has approximately 3x higher
network channel bandwidth

Supercomputing Without Barriers

© 2024 Groq, Inc. | Groq AI Workshop Groq Public 35

State-of-the-art
LLM Inference Performance

GroqRack™ Compute Clusters

© 2024 Groq, Inc. | Groq AI Workshop Groq Public

Recap

36

Architecture Overview

■ Determinism, flat memory hierarchy,
1D interconnect

Key Functional Units

■ MXM, VXM, SXM, MEM

Scaling to 1000s of Groq LPUs

■ Plesiochronous, low-latency
chip-to-chip communication

© 2024 Groq, Inc. | Groq AI Workshop Groq Public

Thank You!
abitar@groq.com

© 2024 Groq, Inc. | Groq AI Workshop Groq Public

Intro to MLAgility™
& GroqFlow™

Sanjif Shanmugavelu
Software Engineer

38

© 2024 Groq, Inc. | Groq AI Workshop Groq Public

Intro to MLAgility™
& GroqFlow™

39

AGENDA

1. High Level Software Stack Overview
2. GroqFlow Intro
3. MLAgility Intro

© 2024 Groq, Inc. | Groq AI Workshop Groq Public

GroqWare™ Suite DIVERSE SUITE OF
DEVELOPMENT TOOLS

Out-of-Box
Groq Compiler provides
out-of-box support for standard
Deep Learning models

+

Productivity
Tools

GroqView Profiler provides
visualization of the chip’s compute
and memory usage at compile time

GroqFlow Tool Chain enables a
single line of Pytorch or TensorFlow
code to import and transform
models through a fully automated
tool chain to run on Groq hardware

ONNX

Groq Assembler

Groq Runtime

Groq Hardware
(GroqCard, GroqNode, GroqRack)

G
ro

q
Fl

ow
™

Groq Compiler

© 2024 Groq, Inc. | Groq AI Workshop Groq Public 41

■ The kernelless Groq™ Compiler
supports ML models
out-the-box.

■ MLAgility is an open-source
benchmarking tool,
demonstrating model support
and performance across a
variety of platforms (Groq™,
CPU, GPU etc.).

■ You can add your own models
and benchmarks.

■ Groq™ performance on the
MLAgility benchmark is
reproducible and guaranteed.

■ Models are ported to the
Groq™ platform with
GroqFlow™.

Benchmark performance.

MLAgility

https://huggingface.co/spaces/Groq/mlagility,
https://github.com/groq/mlagility

Figure 1: Public Groq HuggingFace space

https://huggingface.co/spaces/Groq/mlagility
https://github.com/groq/mlagility
https://huggingface.co/spaces/Groq/mlagility

© 2024 Groq, Inc. | Groq AI Workshop Groq Public 42

The diagram illustrates the
MLAgility repository structure.

Simply put, the MLAgility models
are benchmarked with the benchit
tool, and the results are showcased
on our Hugging Face Spaces page.

MLAgility Setup

MLAgility
Architecture

https://github.com/groq/mlagility

https://github.com/groq/mlagility

© 2024 Groq, Inc. | Groq AI Workshop Groq Public

Recap

43

■ We port models with GroqFlow and
benchmark them with MLAgility

© 2024 Groq, Inc. | Groq AI Workshop Groq Public

Porting Models with
GroqFlow™

Sanjif Shanmugavelu
Software Engineer

44

© 2024 Groq, Inc. | Groq AI Workshop Groq Public

Porting Models
with GroqFlow™

45

AGENDA

1. How To GroqFlow
2. GroqFlow Best Practices
3. GroqFlow Examples
4. Debugging GroqFlow
5. Unwrapping GroqFlow with a

ResNet50 Example

© 2024 Groq, Inc. | Groq AI Workshop Groq PublicGroqIt _

< Daniel (Speaker 1) on the background here >
Same style in as this Graphcore announcement

import transformers

import torch

from groqflow import groqit

model = transformers.GPT2Model(transformers.GPT2Config())

inputs = {

 "input_ids": torch.ones(1, 1_024, dtype=torch.long),

 "attention_mask": torch.ones(1, 1_024, dtype=torch.float),

}

gmodel = groqit(model,inputs)

output = gmodel(**inputs)

Introducing GroqFlow™
Step 1: Get your model0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

*Gold standard of usability: off-the-shelf model from Huggingface.co

https://www.youtube.com/watch?v=F_ZrkofVZgA

© 2024 Groq, Inc. | Groq AI Workshop Groq PublicGroqIt _

< Daniel (Speaker 1) on the background here >
Same style in as this Graphcore announcement

import transformers

import torch

from groqflow import groqit

model = transformers.GPT2Model(transformers.GPT2Config())

inputs = {

 "input_ids": torch.ones(1, 1_024, dtype=torch.long),

 "attention_mask": torch.ones(1, 1_024, dtype=torch.float),

}

gmodel = groqit(model,inputs)

output = gmodel(**inputs)

Introducing GroqFlow™
Step 2: Get some inputs0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

*Gold standard of usability: off-the-shelf model from Huggingface.co

https://www.youtube.com/watch?v=F_ZrkofVZgA

© 2024 Groq, Inc. | Groq AI Workshop Groq PublicGroqIt _

< Daniel (Speaker 1) on the background here >
Same style in as this Graphcore announcement

import transformers

import torch

from groqflow import groqit

model = transformers.GPT2Model(transformers.GPT2Config())

inputs = {

 "input_ids": torch.ones(1, 1_024, dtype=torch.long),

 "attention_mask": torch.ones(1, 1_024, dtype=torch.float),

}

gmodel = groqit(model,inputs)

output = gmodel(**inputs)

Introducing GroqFlow™
Step 3: Just Groq it!0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

*Gold standard of usability: off-the-shelf model from Huggingface.co

https://www.youtube.com/watch?v=F_ZrkofVZgA

© 2024 Groq, Inc. | Groq AI Workshop Groq PublicGroqIt _

< Daniel (Speaker 1) on the background here >
Same style in as this Graphcore announcement

import transformers

import torch

from groqflow import groqit

model = transformers.GPT2Model(transformers.GPT2Config())

inputs = {

 "input_ids": torch.ones(1, 1_024, dtype=torch.long),

 "attention_mask": torch.ones(1, 1_024, dtype=torch.float),

}

gmodel = groqit(model,inputs)

output = gmodel(**inputs)

Introducing GroqFlow™
Inference is easy!

tensor([0.3628, 0.0489, 0.2952, 0.0022,
-0.0161, 0.3451, -0.3209, 0.0021, ...

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

*Gold standard of usability: off-the-shelf model from Huggingface.co

https://www.youtube.com/watch?v=F_ZrkofVZgA

© 2024 Groq, Inc. | Groq AI Workshop Groq PublicGroqIt _

< Daniel (Speaker 1) on the background here >
Same style in as this Graphcore announcement

What if things don’t go
as planned?

Clear feedback on how
to move forward

Introducing GroqFlow™
Clear messages

https://www.youtube.com/watch?v=F_ZrkofVZgA

© 2024 Groq, Inc. | Groq AI Workshop Groq Public 51

GroqIt Key Functions

COMPILES models
into Groq programs

EXECUTES programs
on Groq LPU™

gmodel = groqit(model,inputs)

gmodel(**inputs)

latency = gmodel.benchmark()BENCHMARKS programs
on Groq LPU

or

Introducing GroqFlow™

© 2024 Groq, Inc. | Groq AI Workshop Groq Public

Quick User Guide
GroqIt Args

gmodel = groqit(model, inputs)

model
● Model to be mapped to a GroqModel
● PyTorch model instance or path to an ONNX file

Examples:

groqit(my_pytorch_model,inputs)

Main GroqIt Args

© 2024 Groq, Inc. | Groq AI Workshop Groq Public

ANL: The first customer to have access to GroqFlow

gmodel = groqit(model, inputs)

model
● Model to be mapped to a GroqModel
● Can be a PyTorch model instance or a path to an

ONNX file

inputs
● Dictates the maximum input size the model will

support
● Same exact format as your Pytorch inputs
● Hint: Pad your inputs to the right size

Bad Example:

inputs = tokenizer("I like dogs")

Good Example:

inputs = tokenizer("I like dogs", padding="max_length",
max_length=128)

Quick User Guide
GroqIt Args

Main GroqIt Args

© 2024 Groq, Inc. | Groq AI Workshop Groq Public

ANL: The first customer to have access to GroqFlow

model
● Model to be mapped to a GroqModel
● Can be a PyTorch model instance or a path to an

ONNX file

inputs
● Dictates the maximum input size the model will

support
● Same exact format as your Pytorch inputs
● Hint: Pad your inputs to the right size

num_chips
● Number of Groq LPUs to be used
● Automatically selects by default
● 1, 2 or 4 chips are valid for A1.1 (1, 2, 4, 8 for A1.4)

Example:

groqit(model, inputs, num_chips=4)

gmodel = groqit(model, inputs, num_chips)

Quick User Guide
GroqIt Args

Main GroqIt Args

© 2024 Groq, Inc. | Groq AI Workshop Groq Public

ANL: The first customer to have access to GroqFlow

model
● Model to be mapped to a GroqModel
● Can be a PyTorch model instance or a path to an

ONNX file

inputs
● Dictates the maximum input size the model will

support
● Same exact format as your Pytorch inputs
● Hint: Pad your inputs to the right size

num_chips
● Number of Groq LPUs to be used
● Automatically selects by default
● 1, 2 or 4 chips are valid for A1.1 (1, 2, 4, 8 for A1.4)

rebuild
● GroqIt loads successfully built models by default
● Set rebuild to “always” to force GroqIt to rebuild it

Rebuild a model every time:

groqit(model, inputs, rebuild=”always”)

Use cached model if available:

groqit(model, inputs, rebuild=”never”)

gmodel = groqit(model, inputs, rebuild)

Quick User Guide
GroqIt Args

Main GroqIt Args

© 2024 Groq, Inc. | Groq AI Workshop Groq Public

ANL: The first customer to have access to GroqFlow

model
● Model to be mapped to a GroqModel
● Can be a PyTorch model instance or a path to an

ONNX file

inputs
● Dictates the maximum input size the model will

support
● Same exact format as your Pytorch inputs
● Hint: Pad your inputs to the right size

num_chips
● Number of GroqChip processors to be used
● Automatically selects by default
● 1, 2 or 4 chips are valid for A1.1 (1, 2, 4, 8 for A1.4)

rebuild
● GroqIt loads successfully built models by default
● Set rebuild to “always” to force GroqIt to rebuild it

build_name
● Name used to cache the model
● Defaults to the name of the script

Example:

groqit(modelA, inputsA, build_name=”A”)
groqit(modelB, inputsB, build_name=”B”)

Quick User Guide
GroqIt Args

gmodel = groqit(model, inputs, build_name)

Builds modelB
Builds modelA

Main GroqIt Args

© 2024 Groq, Inc. | Groq AI Workshop Groq Public

gmodel = groqit(model, inputs)
gmodel(**inputs)

ANL: The first customer to have access to GroqFlow

inference/forward pass
● The Groq Model is callable like a Pytorch model
● Performing inference doesn’t require rebuilding
● Hint: Pad your inputs to the same shape used

when creating the model

Note: Not useful for timing purposes, since the
entire Groq environment is setup each time

Example:

>>> pytorch_model(**inputs)
 tensor([0.245, 0.235, 0.235, 0.267])

>>> gmodel(**inputs)
 tensor([0.245, 0.235, 0.235, 0.267])

Quick User Guide
Groq Model Functions

Main Groq Model Functions

© 2024 Groq, Inc. | Groq AI Workshop Groq Public

gmodel = groqit(model, inputs)
gmodel.benchmark()

ANL: The first customer to have access to GroqFlow

Example:

>>> latency = gmodel.benchmark()
>>> print(f”Latency is {latency}ms”)
 Latency is 0.109ms

Quick User Guide
Groq Model Functions

Main Groq Model Functions

inference/forward pass
● The Groq Model is callable like a Pytorch model
● Performing inference doesn’t require rebuilding
● Hint: Pad your inputs to the same shape used

when creating the model

Note: Not useful for timing purposes, since the
entire Groq environment is setup each time

benchmark
● Returns the average latency of 100 runs in ms
● Latency includes PCIe times + on-chip compute

(coming soon)

© 2024 Groq, Inc. | Groq AI Workshop Groq Public

gmodel = groqit(model, inputs)
gmodel.netron()

ANL: The first customer to have access to GroqFlow

Example:

Quick User Guide
Groq Model Functions

Main Groq Model Functions

inference/forward pass
● The Groq Model is callable like a Pytorch model
● Performing inference doesn’t require rebuilding
● Hint: Pad your inputs to the same shape used

when creating the model

Note: Not useful for timing purposes, since the
entire Groq environment is setup each time

benchmark
● Returns the average latency of 100 runs in ms
● Latency includes PCIe times + on-chip compute

netron
● Opens the ONNX model generated by GroqIt

© 2024 Groq, Inc. | Groq AI Workshop Groq Public

gmodel = groqit(model, inputs)
gmodel.groqview()

ANL: The first customer to have access to GroqFlow

Quick User Guide
Groq Model Functions

Main Groq Model Functions

inference/forward pass
● The Groq Model is callable like a Pytorch model
● Performing inference doesn’t require rebuilding
● Hint: Pad your inputs to the same shape used

when creating the model

Note: Not useful for timing purposes, since the
entire Groq environment is setup each time

benchmark
● Returns the average latency of 100 runs in ms
● Latency includes PCIe times + on-chip compute

netron
● Opens the ONNX model generated by GroqIt

groqview
● Opens the GroqView profiler generated by GroqIt

Example:

© 2024 Groq, Inc. | Groq AI Workshop Groq Public

gmodel = groqit(model, inputs,groq_view=True)
gmodel.groqview()

ANL: The first customer to have access to GroqFlow

Example:

Quick User Guide
Groq Model Functions

Main Groq Model Functions

inference/forward pass
● The Groq Model is callable like a Pytorch model
● Performing inference doesn’t require rebuilding
● Hint: Pad your inputs to the same shape used

when creating the model

Note: Not useful for timing purposes, since the
entire Groq environment is setup each time

benchmark (coming soon)
● Returns the average latency of 100 runs in ms
● Latency includes PCIe times + on-chip compute

netron
● Opens the ONNX model generated by GroqIt

groqview
● Visualize data streams and execution schedule
● Requires compiling with groq_view flag

© 2024 Groq, Inc. | Groq AI Workshop Groq Public

25%
increase :(

5
X

6X
5X 8.3X

Groq LPU delivers up to 8.3X better performance on the slowest inference

Determinism

Large On-chip
Memory

Low Latency

67% Increase over
average latency

1% Increase over
average latency**

62
Nvidia results from publicly available data on github.com/NVIDIA (Batch size-1 on TensorRT v8.0.1.6)
*Lower is better
**Increase is limited to host and PCIe IO variance

Groq Advantages

Low Latency Every Time

© 2024 Groq, Inc. | Groq AI Workshop Groq PublicAhmed, I., et al. "Answer Fast: Accelerating BERT on the Tensor Streaming Processor." ASAP’22.
Nvidia results from latest publicly available data (TensorRT v8.4.3) 63

5X
6X

Groq accelerated
BERT inference to
achieve a 99th percentile
latency of 117 µs

LOWER IS BETTER

BERT

© 2024 Groq, Inc. | Groq AI Workshop Groq Public

Best Practices

64

■ GroqFlow is a wrapper around the GroqWare™ Suite that gives you the power to quickly compile and run
models.

■ Pad to the maximum input dimensions
■ Avoid dynamism and control flow (for now..)

© 2024 Groq, Inc. | Groq AI Workshop Groq Public

Recap

65

■ GroqFlow is a wrapper around the
GroqWare™ Suite that gives you the
power to quickly compile and run
models.

© 2024 Groq, Inc. | Groq AI Workshop Groq Public

Benchmarking Models
with MLAgility™

Sanjif Shanmugavelu
Software Engineer

66

© 2024 Groq, Inc. | Groq AI Workshop Groq Public

Benchmarking
Models with
MLAgility™

67

AGENDA

1. MLAgility Devices and Runtimes
2. MLAgility benchit CLI
3. Writing Scripts with MLAgility
4. MLAgility Report Generation and

Visualization
5. MLAgility Future Work

© 2024 Groq, Inc. | Groq AI Workshop Groq Public 68

MLAgility's tools currently support the following combinations of runtimes and devices. We leverage ONNX files because of their broad
compatibility with model frameworks (PyTorch, Keras, etc.), software (ONNX Runtime, TensorRT, Groq Compiler, etc.), and devices
(CPUs, GPUs, Groq LPUs, etc.)

Device Type Device arg Runtime Runtime arg Specific Devices

Nvidia GPU nvidia TensorRT† trt Any Nvidia GPU
supported by TensorRT

x86 CPU x86 ONNX Runtime‡

Pytorch Eager§

Pytorch 2.x Compiled*§

ort, torch-eager,
torch-compiled

Any Intel or AMD CPU
supported by the
runtime

Groq Groq GroqFlow Groq GroqChip1

68† Requires TensorRT >= 8.5.2 ‡ Requires ONNX Runtime >= 1.13.1 * Requires Pytorch >= 2.0.0 § Only available on local backend

Benchmark setup
MLAgility Devices and Runtimes

© 2024 Groq, Inc. | Groq AI Workshop Groq Public 69https://github.com/groq/mlagility/blob/main/docs/code.md

The MLAgility Benchmarking and
Tools package provides a CLI, benchit,
and Python API for benchmarking
ML models

Let’s benchmark the popular BERT
transformer model with benchit:
benchit models/transformers/bert.py

–device {groq, nvidia x86, }

The device flag specifies the
benchmark hardware. The
output is saved in the user
.cache/mlagility directory

–device x86

–device nvidia

Benchmark with benchit
MLAgility CLI

https://github.com/groq/mlagility/blob/main/docs/code.md

© 2024 Groq, Inc. | Groq AI Workshop Groq Public 70https://github.com/groq/mlagility/tree/main/models#example-script

The following example, copied
from models/transformers/bert.py is
a sample input script for the
MLAgility benchmark

It has the following properties:
■ Labels in the top line of the file

■ Docstring indicating where the
model was sourced from

■ mlagility.parser.parse() is
used to parameterize the model

■ The model is instantiated and
invoked against a set of inputs

How to write a benchmark script
MLAgility Input

© 2024 Groq, Inc. | Groq AI Workshop Groq Public 7171

Once you have fulfilled
the prerequisites, you can
evaluate one model from
the benchmark with a
command like this:

You can also run the
entire MLAgility
benchmark in one
shot with:

Note: Benchmarking the entire corpora of MLAgility models might take a very long time

Automated push-button benchmarking
MLAgility Full Benchmark

© 2024 Groq, Inc. | Groq AI Workshop Groq Public 7272Tp present visually, use out streamlit powered huggingface directory
https://github.com/groq/mlagility/tree/main/trackers/huggingface

You can aggregate all of
the benchmarking results
from your mlagility cache
into a CSV file with:

If you want to only report
on a subset of models, we
recommend saving the
benchmarking results into
a specific cache directory:

By default, all

results are saved in

/home/{$USER}/.cache/

mlagility)

Collect and present results
MLAgility Report Generation

https://github.com/groq/mlagility/tree/main/trackers/huggingface

© 2024 Groq, Inc. | Groq AI Workshop Groq Public 73

Current Limitations / Constraints:

Groq's latency is
computed using
GroqModel.estimate_latency()

It does not take into account
runtime performance

Results currently only
represent batch 1
performance

Takes into account deterministic
compute time and estimates an
ideal runtime with ideal I/O time

Limited number of models,
devices, vendors, and runtimes

To infinity and beyond
MLAgility Limitations and Future Work

© 2024 Groq, Inc. | Groq AI Workshop Groq Public 74

Future work:

Include
additional
classes of
models

Experiments that
include sweeps
over batch and
input sizes

Include operator
microbenchmarks

Increase the
number of
devices from
existing
vendors

Include devices
from additional
vendors and
number of
runtimes
supported

To infinity and beyond
MLAgility Limitations and Future Work

© 2024 Groq, Inc. | Groq AI Workshop Groq Public

Recap

75

■ MLAgility is a fully open-source
benchmarking tool to benchmark
acceleration hardware and runtimes.

© 2024 Groq, Inc. | Groq AI Workshop Groq Public

Thank You!
sshanmugavelu@groq.com

© 2024 Groq, Inc. | Groq AI Workshop Groq Public

Thank You!
iarsovski@groq.com

