
Bob Chesebrough
AI Software Solutions Engineer

Name of Event

Intro to Intel Extensions of Scikit-learn to
Accelerate Machine Learning Frameworks

2

Learning Objectives

• At the end of the webinar you will be able to:
• Describe the value of the Intel AI Analytics Toolkit

• Describe the value of one component of the library called Intel Extensions for Scikit-learn*

• Where to get the toolkit

• Identify classification, regression, clustering, and dimensionality reduction algorithms
powered by AI Analytics Toolkit

• Describe the application of a few lines of code to enable these optimizations

• Stretch Goal: Describe Compute Follows Data methodology for application of Scikit-learn to
Intel GPUs

Freedom to Make Your Best Choice
• Choose the best accelerated technology the software doesn’t

decide for you

Realize all the Hardware Value
• Performance across CPU, GPUs, FPGAs, and other accelerators

Develop & Deploy Software with Peace of Mind
• Open industry standards provide a safe, clear path to the future
• Compatible with existing languages and programming models

including C, C++, Python, SYCL, OpenMP, Fortran, and MPI

oneAPI
One Programming Model for Multiple
Architectures and Vendors

Industry
Initiative

Intel
Product

Scalar Vector Spatial Matrix

Middleware & Frameworks

Application Workloads Need Diverse Hardware

CPU GPU FPGA Other accel.

Intel® oneAPI Toolkits
A complete set of proven developer tools expanded from CPU to Accelerators

Intel® oneAPI Rendering
Toolkit
Create performant, high-fidelity visualization
applications

Intel® oneAPI Tools for HPC
Deliver fast Fortran, OpenMP & MPI
applications that scale

Intel® oneAPI Tools for IoT
Build efficient, reliable solutions that run at
network’s edge

Intel® AI Analytics Toolkit
Accelerate machine learning & data science
pipelines end-to-end with optimized DL
frameworks & high-performing Python libraries

Latest version available 2022.1

Intel® Distribution of OpenVINO™ Toolkit
Deploy high performance inference & applications from
edge to cloud

A core set of high-performance libraries and tools for building C++, SYCL and Python applications

XPUs

Low-Level Hardware Interface

oneAPI

A cross-architecture language based on SYCL
standards

Powerful libraries designed for acceleration of
domain-specific functions

A complete set of advanced compilers, libraries,
and porting, analysis and debugger tools

Powered by oneAPI
Frameworks and middleware that are built using
one or more of the oneAPI industry specification
elements, the SYCL language, and libraries listed
on oneapi.com.

Intel’s oneAPI
Ecosystem

LanguagesCompatibility Tool Analysis & Debug
Tools

Intel® oneAPI Product

CPU GPU FPGA

Visit software.intel.com/oneapi for more details
Some capabilities may differ per architecture and custom-tuning will still be required. Other accelerators to be supported in the future.

Middleware & Frameworks (Powered by oneAPI)

Application Workloads Need Diverse Hardware

...

Available Now

Built on Intel’s Rich Heritage of CPU
Tools Expanded to XPUs

Other accelerators

oneDAL oneDNN oneCCL

Libraries

oneMKL oneTBB oneVPL oneDPL

file:///E:%5CIHI%2520Creative%2520Dropbox%5CJay%2520Jaime%5CIntel%5COneAPI%5CGold%2520Deck%5CAssets%5CCopy%2520Assets%5Csoftware.intel.com%5Coneapi
software.intel.com/oneapi

8

Intel® oneAPI
AI Analytics Toolkit

Accelerate end-to-end AI and data analytics
pipelines with libraries optimized for Intel®
architectures

Who Uses It?
Data scientists, AI researchers, ML and DL developers,
AI application developers

Top Features/Benefits
• Deep learning performance for training and inference

with Intel optimized DL frameworks and tools

• Drop-in acceleration for data analytics and machine
learning workflows with compute-intensive Python
packages

Learn More: software.intel.com/oneapi/ai-kit

Deep Learning

Intel® Optimization for TensorFlow

Intel® Optimization for PyTorch

Intel® Neural Compressor

Model Zoo for Intel® Architecture

Machine Learning

Intel® Extension for Scikit-learn Intel-optimized XGBoost

Get the Toolkit HERE or via these locations

Intel® DevCloudIntel Installer Docker Apt, Yum Conda

CPU GPU

Hardware support varies by individual tool. Architecture support will be expanded over time.

Back to Domain-specific Toolkits for Specialized Workloads

Intel® AI Analytics Toolkit

Intel-optimized Python

Numba PythonNumPy SciPy Pandas

Data Analytics

Intel® Distribution of Modin OmniSci Backend

https://software.intel.com/en-us/oneapi/ai-kit
https://software.intel.com/content/www/us/en/develop/tools/oneapi/download.html
https://intelsoftwaresites.secure.force.com/devcloud/oneapi
https://software.intel.com/content/www/us/en/develop/articles/installation-guide-for-intel-oneapi-toolkits.html
https://hub.docker.com/r/intel/oneapi-aikit
https://software.intel.com/content/www/us/en/develop/articles/oneapi-repo-instructions.html
https://software.intel.com/content/www/us/en/develop/articles/installing-ai-kit-with-conda.html

9

Acquiring oneAPI AI Analytics Toolkit
or Intel Extensions for scikit-learn specifically

If you just want the Intel Extensions for scikit-learn for your system
(without the other library components):
There are multiple ways: visit link below
• https://www.intel.com/content/www/us/en/developer/articles/guide/i

ntel-extension-for-scikit-learn-getting-started.html
Summary – installation by: Conda, pip, docker container, …

• sdsd

Comprehensive Library:
https://www.intel.com/content/www/us/en/developer/tools/oneapi/ai-
analytics-toolkit-download.html

https://www.intel.com/content/www/us/en/developer/tools/oneapi/ai-analytics-toolkit-download.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/ai-analytics-toolkit-download.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/ai-analytics-toolkit-download.html

10

Motivation

• Achieve acceleration on Intel CPU & current and future GPU
• Be ready for future innovations from Intel
• Can be achieved with a few lines of code

Intel Confidential

11

Procedure for Ignition!

• Intel CPU: for Intel current and future CPUs
• - Apply import patch for Intel Optimized function

• Intel GPU: for Intel current and future GPUs
• - Apply import patch for Intel Optimized function
• - Apply Compute Follows Data method to cast NumPy arrays to tensor

Intel Confidential

12

What’s in this for the a Developer?
• Seamless way to speed up your Scikit-learn application.

• 23 commonly used machine
learning algorithms have
been accelerated

• We will explore patching to
enable these optimized
algorithms

• In Hands on labs you will see,
and experience dramatic
speedups using several of
these

13

Gallery of Algorithms

14

Gallery of Algorithms Optimized for Intel CPU
Name
DBSCAN Linear Regression K Nearest Neighbor

Classifier
K Nearest Neighbor
Regressor

KMeans Elasticnet Regression
(L1 & L2)

Random Forest Classifier Assert All Finite

Nearest
Neighbor
(Unsupervised)

Lasso Regression (L1) Random Forest Regressor ROC AUC score

Principal
Component
Analysis (PCA)

Ridge Regression (L2) Support Vector Classifier Train Test Split

tSNE Logistic Regression Support Vector Regressor Pair Wise Distance

15

Gallery of Algorithms Optimized for Intel GPU
Name
Linear Regression Logistic Regression DBSCAN

KNeighborsRegressor Support Vector Classifier KMeans

Random Forest Regressor K Nearest Neighbor Classifier Principal Component
Analysis (PCA)

Random Forest Classifier

16

Code & Results

17

Some results: recent run

KNN acceleration results we expect
to see in next months workshop on
the Intel DevCloud.
This is a comparison of stock library
to Intel Extensions for Scikit-learn*

Copyright © 2022, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

18

A few more results you will generate in next months workshop!

Copyright © 2022, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

19

Patching

20

Introduction to patching

• Intel® Extension for Scikit-learn* provides a way to accelerate existing scikit-learn code.
• In code, we will import sklearnex – this is the python library name for Intel Extensions for

Scikit-learn*
• Via patching: replacing the stock scikit-learn algorithms with their optimized versions

provided by the extension.
• You may enable patching in different ways:
• Without editing the code: using a command line flag
• Within code: using an import and a function call
• Un-patching: using methods to follow

• k

https://intel.github.io/scikit-learn-intelex/what-is-patching.html

21

Patching Alternatives

• Command line:

• Inside script or Jupyter Notebook:

from sklearnex import patch_sklearn
patch_sklearn()

python -m sklearnex my_application.py

22

Patching Alternatives

• Unpatching is similar:

from sklearnex import unpatch_sklearn
unpatch_sklearn()

23

Patching Alternatives

• Patching or patching or unpatch specified functions surgically:

from sklearnex import unpatch_sklearn
unpatch_sklearn(“SVC”)

from sklearnex import patch_sklearn
patch_sklearn(“SVC”)
patch_sklearn([“SVC”, “PCA”])

24

• Getting the list of optimized functions:

from sklearnex import get_patch_names
get_patch_names()

For up to date info
Supported Functions and Parameters

https://intel.github.io/scikit-learn-intelex/algorithms.html

25

Patching and imports: The Order

from sklearnex import patch_sklearn
patch_sklearn() # apply BEFORE import of targets

from sklearn.model_selection import train_test_split

Import sklearnex

Apply “monkey patch”
BEFORE

Import desired sklearn
algorithms AFTER the patch

• The import order is very important!
• Patch BEFORE you import the targeted scikit-learn* library!

26

Train and Test Split: The Syntax

from sklearnex import patch_sklearn
patch_sklearn() # apply BEFORE import of targets

from sklearn.model_selection import train_test_split

Import sklearnex

Apply “monkey patch”

Import desired sklearn
algorithms AFTER the patch

Split the data and put 30% into the test set

X_train, X_test, y_train, y_test = train_test_split(

... X, y, test_size=0.3)

Example Code for SVC on CPU

Copyright © 2022, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

28

Target Intel GPU
• The intent is to demonstrate “HOW” to target Intel GPU using Intel

Extensions for Scikit-learn*
• The intention today is NOT to demonstrate GPU performance

29

Compute Follows Data

• Using a support library, we cast our data to device tensor, then
send it to the device

• Any enabled sklearn methods involving that tensor are
computed on the device, typically during call to fit()

• Results are returned to the host
• This is Compute Follows Data

30

dpctl library

• dpctl is the library used to control access to the compute devices

• Import dpctl

• Getting a list of available devices :

32

Device Queue
• Get queue of all devices available
• Pick the one you wish to target: in this case gpu_device

33

Apply patch to sklearn

34

Prepare data

• Cast Numpy arrays to dpctl tensor
• Supply tensor to sklearn fit (“Compute Follow Data”)

35

Casting

• Cast NumPy array FROM_NUMPY or asarray to dpctl. Tensor

• If tensor is returned from sklearn, then cast it TO_NUMPY

36

When to cast data Returned from the device?

Pay attention to return types from:
•fit - many cases in scikit-learn, fit returns selfobject do NOT cast
•fit_predict - returns ndarray requires casting after the call on host (to_numpy)
•predict - returns ndarray requires casting after the call on host (to_numpy)
•fit_transform - returns returns ndarray requires casting after the call on host
(to_numpy)
•tranform - typically returns ndarray requires casting after the call on host
(to_numpy)

37

DevCloud Access

• To run on the Intel DevCloud:
• Setting up an account is quick and easy. Enroll here:

https://devcloud.intel.com/oneapi/get_started/
• For use on Intel® DevCloud, there are environment already configured

for you:
 Simply launch a Jupyter* Notebook using the Python* 3.7 (Intel®
oneAPI) Icon

• For play outside of DevCloud, instructions are provided detailing how to
acquire the library for your own system

38

Access to Notebooks

Repo:

• From DevCloud Terminal:
git clone https://github.com/IntelSoftware/Machine-
Learning-using-oneAPI.git

Intel Confidential

39

Continue the series!

https://www.alcf.anl.gov/aurora-learning-paths-intel-extensions-scikit-learn-accelerate-machine-learning-frameworks

https://www.alcf.anl.gov/aurora-learning-paths-intel-extensions-scikit-learn-accelerate-machine-learning-frameworks

Give us feedback…
• Tell us what you thought of this

webinar.
• Give us feedback on what topics

you’d like to see in future
webinars.

Webinar Survey

42

System Info

Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Byte Order: Little Endian Address sizes: 46 bits physical, 48 bits virtual CPU(s): 24 On-
line CPU(s) list: 0-23 Thread(s) per core: 2 Core(s) per socket: 6 Socket(s): 2 NUMA node(s): 2 Vendor ID: GenuineIntel CPU family: 6 Model:
85 Model name: Intel(R) Xeon(R) Gold 6128 CPU @ 3.40GHz Stepping: 4 CPU MHz: 1200.254 CPU max MHz: 3700.0000 CPU min MHz:
1200.0000 BogoMIPS: 6800.00 Virtualization: VT-x L1d cache: 384 KiB L1i cache: 384 KiB L2 cache: 12 MiB L3 cache: 38.5 MiB NUMA node0
CPU(s): 0-5,12-17 NUMA node1 CPU(s): 6-11,18-23 Vulnerability Itlb multihit: KVM: Vulnerable Vulnerability L1tf: Mitigation; PTE Inversion
Vulnerability Mds: Mitigation; Clear CPU buffers; SMT vulnerable Vulnerability Meltdown: Mitigation; PTI Vulnerability Spec store bypass:
Mitigation; Speculative Store Bypass disabled v ia prctl and seccomp Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and
__user pointer sanitization Vulnerability Spectre v2: Mitigation; Full generic retpoline, IBPB condit ional, IBRS_FW, STIBP conditional, RSB
filling Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Mitigation; Clear CPU buffers; SMT vulnerable Flags: fpu vme de pse tsc
msr pae mce cx8 apic sep mtr r pge mca cmov pat pse36 clflush dts acpi mmx f xsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rd tscp lm
constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperf mperf pni pclmulqdq dtes64 monitor ds_cpl vmx
s mx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid d ca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadli ne_timer aes xsave avx f16c rdrand
lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 cdp_l3 inv pcid_single pti ssbd mba ibrs ibpb stibp tpr_sh adow vnmi flexpriority ept
vpid ept_ad fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpci d rtm cqm mpx rdt_a avx512f avx512dq rdseed adx smap clflushopt
clwb intel_pt avx512cd avx512b w avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_l lc cqm_occup_llc cqm_mbm_total cqm_mbm_local dt
herm ida arat pln pts hwp hwp_act_window hwp_ep p hwp_pkg_req pku ospke md_clear flush_l1d

Copyright © 2022, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

