
SYCL and oneMKL

Hugh Bird

Rafal Bielski

Duncan McBain

Pablo Lopez Ramos

Argonne – 20th June 2024

Established 2002 in
Edinburgh, Scotland.

Grown successfully to around
100 employees.

In 2022, we became a wholly
owned subsidiary of Intel.

Committed to expanding the
open ecosystem for
heterogeneous computing.

Through our involvement in
oneAPI and SYCL
governance, we help to
maintain and develop open
standards.

Developing at the forefront
of cutting-edge research.

Currently involved in two
research projects - SYCLOPS
and AERO, both funded by
the Horizon Europe Project.

Enabling AI & HPC To Be Open, Safe & Accessible To All

3

Today's event

4

We will show how to achieve portability
of mathematical computations across
GPU vendors using oneMKL

60 min presentation + 30 min hands-on
session

Please ask questions at the end of each
section (agenda in the next slide)

Hugh Bird
Staff Software Engineer @ Codeplay
member of Performance Libraries Team and oneMKL contributor

Duncan McBain
Senior Software Engineer @ Codeplay
product owner of the oneAPI Support Team

Pablo Lopez Ramos
Software Engineering Contractor @ Codeplay
member of the oneAPI Support Team

Rafal Bielski
Senior Software Engineer @ Codeplay
supports SYCL users in achieving the best performance

Agenda

• A quick introduction to SYCL
• What is oneMKL
• oneMKL Interface Library

• What can it do?
• How do you use it?

• How does it work?
• Building it
• Gotchas
• Performance

• Workshop
• Build and run an example with oneMKL

5

SYCL
A really quick introduction

SYCL is a single-source, high-level, standard C++ programming model,
that can target a range of heterogeneous platforms

Open standard provided by the non-profit cross-industry Khronos Group

Well-defined concurrency and memory models enable more
optimisation
and performance opportunities

7

• Standard C++
• SYCL 2020 based on ISO C++17

• Unlike in other parallel programming
APIs, there are:

• No pragmas or macros
• No special attributes
• No language extensions

Single C++ source for all architectures

Device management with queues

Memory management with buffers

Submit a work
unit to a queue

Execute
device code

GPU CPU FPGA Specialised
processors

8

SYCL performance is comparable to native CUDA/HIP

9

See our blog post for more details on these benchmark results

https://codeplay.com/portal/blogs/2023/04/06/sycl-performance-for-nvidia-and-amd-gpus-matches-native-system-language

But should you even write your own kernels?

The open-standard oneAPI ecosystem centred around SYCL comes to help!

You might be familiar with some of the vendor-specific GPU numerical libraries
• Intel: Math Kernels Library

• NVIDIA: cuBLAS, cuSOLVER, cuRAND, cuFFT

• AMD: rocBLAS, rocSOLVER, rocRAND, rocFFT

Imagine being able to use all of them with single source code → oneMKL

10

oneMKL provides performance and portability

11

write single source code

run everywhere

The oneMKLs
one API, two implementations, and three things

Pieces of the puzzle

• oneMKL consists of three parts:
• The oneMKL specification - part of the oneAPI specification
• An open-source library implementing the MKL API - oneMKL Interfaces
• The original Intel optimised maths routines - for clarity, Intel® MKL

oneAPI and oneMKL

• oneAPI has a specification describing how its components should behave
• oneMKL is a component of oneAPI covering fundamental mathematical

routines for HPC, engineering, science etc.

• The UXL (Unified Acceleration) Foundation develops these specifications

• The specification is open-source, available on GitHub

14

oneMKL Interface Library

• The topic of this presentation!
• Implements the oneMKL specification, dispatching to other libraries under-

the-hood
• Intel (Intel's MKL)
• Nvidia (cuBLAS, cuRAND, cuFFT etc.)
• AMD (rocBLAS, rocFFT etc.)
• And SYCL-supported devices ("generic" SYCL code)

• DPC++ and AdaptiveCpp

• (AdaptiveCpp support varies by backend but is being worked on)

15

Intel® oneMKL

• We’ll refer to this as just “MKL” to reduce the confusion
• Intel CPU and Intel GPU
• Mostly conforms to the oneMKL spec except for some legacy reasons
• Available as part of the Intel oneAPI base toolkit

16

The oneMKLs

17

oneAPI oneMKL
Specification

oneMKL Interface library Intel ® oneMKL

• In short, oneMKL interfaces and Intel® MKL both implement the oneMKL specification
• oneMKL interfaces can dispatch to Intel® MKL as well as other vendor libraries
• Intel® MKL is available via the Intel website as part of the oneAPI base toolkit
• oneMKL interfaces are available on GitHub

oneMKL: capabilities

Domains

• BLAS
• LAPACK
• DFT
• RNG
• Sparse BLAS

19

oneMKL
Interface Library

RNG

BLAS

FFT

LAPACK

Sparse BLAS

Backends

20

oneMKL
Interface Library

RNG

BLAS

FFT

LAPACK

MKL-CPU

MKL-GPU

Sparse BLAS

rocFFT

cuFFT

portFFT

cuSOLVER

cuRAND

cuBLAS

rocSOLVER

rocRAND

rocBLAS

Netlib

MKL-CPU

MKL-CPU

MKL-CPU

MKL-GPU

MKL-GPU

MKL-GPU

portBLAS

Runtime dispatch

// Get a sycl::queue on any vendor’s device.

sycl::queue myQueue;

// oneMKL handles the dispatch to the

// correct backend library.

oneapi::mkl::<fn>(myQueue, …);

• oneMKL can build with support
for multiple vendors at once.

• oneMKL can automatically
dispatch to the correct backend
library.

• Backends are lazily dlopened

21

Static dispatch

using oneapi::mkl;

// Choose a particular device

sycl::queue intelQueue(myIntelGPUSelector);

// Use a selector that uses a particular /
// oneMKL backend.

backend_selector<backend::mklgpu>
mklgpuSelector{intelGpuQueue};

// Call a backend function directly.

oneapi::mkl::<fn>(mklgpuSelector, …);

• Avoid overhead of dispatch tables
by linking directly against backend
libraries.

22

oneMKL demo

23

oneMKL: using it

BLAS

sycl::queue syclQueue;

// Your data needs to be accessible on the GPU.

auto dev_A = sycl::malloc_device<float>(sizeA, syclQueue);

// … allocate memory, give it relevant values.

// Its like the BLAS API, but taking a queue argument. The USM API returns an event.

gemm_done = oneapi::mkl::blas::column_major::gemm(syclQueue, transA, transB, m, n, k, alpha,

 dev_A, ldA, dev_B, ldB, beta, dev_C, ldC);

// Wait for the work to finish.

gemm_done.wait_and_throw();

25

https://github.com/oneapi-src/oneMKL/blob/develop/examples/blas/run_time_dispatching/level3/gemm_usm.cpp

Random number generation

using oneapi::mkl;

// A random number generator is linked to a sycl::queue

rng::default_engine engine(syclQueue, seed);

rng::uniform<float> distribution(low, high);

// Use the state we generated earlier.

auto eventOut = rng::generate(distribution, engine, n, deviceMem);

// Wait for the work to finish.

eventOut.wait_and_throw()

26

https://github.com/oneapi-src/oneMKL/blob/develop/examples/rng/run_time_dispatching/uniform_usm.cpp

DFT

using oneapi::mkl;

// A descriptor describes the DFT you want…

dft::descriptor<dft::precision::SINGLE, dft::domain::REAL> desc(N);

desc.set_value(dft::config_param::PLACEMENT, dft::config_value::INPLACE);

// Once set, it is committed on for the chosen queue.

desc.commit(syclQueue);

// Compute the DFTs…

auto computeEvent = dft::compute_forward(desc, x_usm);

// Wait for the result.

computeEvent.wait_and_throw();

27

https://github.com/oneapi-src/oneMKL/blob/develop/examples/dft/run_time_dispatching/real_fwd_usm.cpp

LAPACK

using oneapi::mkl;

// Some APIs need scratch memory to be pre-allocated.

std::int64_t getrf_scratchpad_size = lapack::getrf_scratchpad_size<float>(syclQueue, m, n, lda);

float* getrf_scratchpad = sycl::malloc_shared<float>(getrf_scratchpad_size, syclQueue);

// … More allocs, etc.

// LU factorization on device

auto getrfDone = lapack::getrf(syclQueue, m, n, devA, lda, dev_ipiv, getrf_scratchpad, getrf_scratchpad_size);

// Use LU factorization to solve system on device. Needs LU factorization to be complete.

auto getrsDone = lapack::getrs(syclQueue, trans, n, nrhs, devA, lda, dev_ipiv,

 devB, ldb, getrs_scratchpad, getrs_scratchpad_size, {getrfDone});

// Wait until calculations are done

syclQueue.wait_and_throw();

28

https://github.com/oneapi-src/oneMKL/blob/develop/examples/lapack/run_time_dispatching/getrs_usm.cpp

CMake

oneMKL is installed

find_package(oneMKL REQUIRED)

// Link everything, runtime dispatch

target_link_library(mytarget PRIVATE MKL::onemkl)

// Link against specific backend

target_link_library(mytarget PRIVATE
MKL::onemkl_<domain>_<backend>)

Using FetchContent

include(FetchContent)

set(BUILD_FUNCTIONAL_TESTS OFF)

set(BUILD_EXAMPLES OFF)

set(ENABLE_<BACKEND_NAME>_BACKEND ON)

FetchContent_Declare(

 onemkl_interface_library

 GIT_REPOSITORY https://github.com/oneapi-src/oneMKL.git

 GIT_TAG develop

)

FetchContent_MakeAvailable(onemkl_interface_library)

target_link_libraries(myTarget PRIVATE onemkl)

// or for a specific backend

target_link_libraries(myTarget PRIVATE onemkl_<domain>_<backend>)

29

… And add <install_dir>/lib to your LD_LIBRARY_PATH if its installed in a non-standard location, otherwise dlopen doesn’t work.

oneMKL: on the inside

The runtime dispatch mechanism

31

Backend
library

mapping table

Dispatch
function table

Backend
library

E.g. onemkl_dft_cufft

Library
call

E.g. cuFFT

oneMKL
API call

Backend
library

E.g. onemkl_dft_rocfft

Library
call

E.g. rocFFT

Backend
library

E.g. onemkl_dft_mklgpu

Library
call

E.g. onemkl_dft_mklgpu

Static dispatch

Runtime dispatch

dlopens and calls

Chooses backend
library based on

domain and device
vendor

Common API for all of a
domain’s backend libraries

internally

oneMKL: building it
The documentation makes it look harder than it is

With DPC++

cmake $ONEMKL_DIR \
 -GNinja \
 -DCMAKE_CXX_COMPILER=icpx \
 -DCMAKE_C_COMPILER=icx \
 -DENABLE_MKLGPU_BACKEND=ON \
 -DENABLE_MKLCPU_BACKEND=ON \
 -DENABLE_CUFFT_BACKEND=ON \
 -DENABLE_CUBLAS_BACKEND=ON \
 -DENABLE_ROCRAND_BACKEND=ON \
 -DENABLE_FUNCTIONAL_TESTS=OFF \
 -DHIP_TARGETS=gfx90a

• Building isn’t that complicated.
• Enable the backends you want
• Set HIP_TARGETS on AMD
• Disable functional tests in most cases

• What does supported vs
unsupported mean?
• Supported is what we actually test

with
• But using icpx + Codeplay plugins

does work, and it's probably what you
should do.

• On AMD, you can only have a
single arch right now.

33

oneMKL: gotchas

oneMKL: gotchas

• Backend libraries don't all support every feature
o Eg. The cuFFT backend doesn't support scaling.

• Backend libraries make different guarantees
o Eg. The rocFFT backend can modify input.

35

oneMKL: gotchas

• Variadic functions like
• desc.set_value(dft::config_param::INPUT_STRIDES, myStrides);

• The spec uses int64_t
• Variadic arguments means that the compiler won’t tell you you’re wrong.

• LD_LIBRARY_PATH

36

Coming from Intel® MKL

Intel® MKL

#include <oneapi/mkl/dfti.hpp>

DFTI_INPLACE

oneMKL Interface Library

#include <oneapi/mkl/dft.hpp>

oneapi::mkl::dft::config_value::INPLACE

37

oneMKL: performance

Performance

oneMKL is a thin wrapper calling native backend libraries
• very little overhead, negligible in typical HPC use cases

• we are working on improving the overhead for small workloads where it
may be more visible

• you get comparable performance + portability

Let's test this with a simple GEMM example!

39

op(X) is one of op(X) = X or op(X) = XT or op(X) = XH

alpha and beta are scalars

A, B and C are matrices

op(A) is an m-by-k matrix

op(B) is a k-by-n matrix

C is an m-by-n matrix

Performance

• Code from VelocityBench hplinpack DPC++ example

• We call it with double-precision matrices with
{m,n,k} = {16384, 2048, 2048} filled with random values
in the range 0.0–1.0

• Three code versions compiled into four executables:
• CUDA: cublasDgemm
• HIP: hipblasDgemm
• IntelMKL / oneMKL (same API): oneapi::mkl::blas::column_major::gemm

40

https://github.com/oneapi-src/Velocity-Bench/blob/50343b438e838ceae1eb11a10196d3ae90aebb67/hplinpack/dpcpp/hpl-2.3/src/dpcpp/dpcpp_dgemm.cpp

Performance

Same code runs on 7 different
devices from 3 different
vendors (6 GPUs and 1 CPU)

Comparable results to the
native library in all cases

No need to maintain three
versions of the code if just one
does it!

41

Performance varies by use, configuration and other factors. Performance results are based on testing as of dates
shown in configurations and may not reflect all publicly available updates. See backup for configuration details.

No product or component can be absolutely secure. Your costs and results may vary. Intel technologies may
require enabled hardware, software or service activation.

Details of the software and hardware used to produce these results are available in the backup slides. "native" means cuBLAS on NVIDIA GPU, hipBLAS on AMD GPU and Intel MKL on Intel GPU/CPU

Time to give it a go

… But first!

• Want something that oneMKL doesn’t have / support?
• Make an issue!

• Find a bug?
• Make an issue!

• Finding something confusing?
• Make an issue!

Issues let us justify spending time on improving oneMKL.

43

Hands-on with oneMKL

• We have a pre-prepared single-page application that needs
the oneMKL section added on GitHub:

• https://github.com/codeplaysoftware/syclacademy/tree/main/Code_Exerc
ises/OneMKL_gemm

• Instructions are on the page, but the starting skeleton is in the "source" file,
with the answer in the "solution" file, but we'd encourage you to give it a
go before checking!

https://github.com/codeplaysoftware/syclacademy/tree/main/Code_Exercises/OneMKL_gemm
https://github.com/codeplaysoftware/syclacademy/tree/main/Code_Exercises/OneMKL_gemm

Hints

• The sample is performing a GEMM, so add this function
• If you are using the compiler standalone, i.e. without CMake or similar, flags

are required:
• icpx -fsycl -L$ENV{MKLROOT} -lonemkl solution_onemkl_usm_gemm.cpp

• If using USM, copies to the device and back will be required

oneAPI Plugins for
NVIDIA/AMD
Scan QR code or visit developer.codeplay.com

Performance varies by use, configuration and other factors.

Performance results are based on testing as of dates shown in
configurations and may not reflect all publicly available updates. See
backup for configuration details.

No product or component can be absolutely secure.

Your costs and results may vary.

Intel technologies may require enabled hardware, software or service
activation.

© Codeplay Software Ltd.. Codeplay, Intel, the Intel logo, and other Intel
marks are trademarks of Intel Corporation or its subsidiaries. Other names
and brands may be claimed as the property of others.

Disclaimers

A wee bit of legal

Performance benchmark details
Main function: https://gist.github.com/rafbiels/e93b70098d46e947ce825eb1cc95f6b5
VelocityBench dpcpp_dgemm.cpp: https://github.com/oneapi-src/Velocity-Bench/blob/50343b438e838ceae1eb11a10196d3ae90aebb67/hplinpack/dpcpp/hpl-2.3/src/dpcpp/dpcpp_dgemm.cpp

Base compilation command: icpx -fsycl -fsycl-targets=${SYCL_TARGET} ${OFFLOAD_ARCH_FLAGS} -o onemkl main.cpp dpcpp_dgemm.cpp

Extra flags:
oneMKL: -lonemkl
Intel MKL: -DMKL_ILP64 -qmkl=parallel -qtbb

cuBLAS: -DUSE_CUBLAS -lcublas -lcuda -lcudart -L$(dirname $(which nvcc))/../lib64
hipBLAS: -DUSE_HIPBLAS -D__HIP_PLATFORM_AMD__=${HIP_TARGET} -L${ROCM_PATH}/hipblas/lib/ -L${ROCM_PATH}/hip/lib -lhipblas –lamdhip64

Software stack: Ubuntu 22.04.4 LTS, oneAPI Base Toolkit 2024.1, CUDA 12.4, ROCm 5.4.3, oneMKL interfaces commit 6d6a7b711dbc55c49370b8ddbcc9db6e81a6ac27 + PR #490

Hardware (6 machines):
1. Intel i9-12900K CPU + NVIDIA GeForce RTX 3060 GPU
2. Intel Xeon Platinum 8268 CPU + NVIDIA TITAN RTX GPU
3. Intel Xeon Gold 6326 CPU + NVIDIA A100 PCIE 40GB GPU
4. 2x AMD EPYC 7402 CPU + AMD Instinct MI210 GPU
5. Intel i9-12900K CPU + AMD Radeon PRO W6800 GPU
6. 2x Intel Xeon Gold 5418Y CPU + Intel Data Center Max 1100 GPU

Tested on 31 May 2024

Performance varies by use, configuration and other factors.

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates. See backup for configuration details.

No product or component can be absolutely secure.

Your costs and results may vary.

Intel technologies may require enabled hardware, software or service activation.

48

https://gist.github.com/rafbiels/e93b70098d46e947ce825eb1cc95f6b5
https://github.com/oneapi-src/Velocity-Bench/blob/50343b438e838ceae1eb11a10196d3ae90aebb67/hplinpack/dpcpp/hpl-2.3/src/dpcpp/dpcpp_dgemm.cpp

	Slide 1: SYCL and oneMKL
	Slide 3
	Slide 4: Today's event
	Slide 5: Agenda
	Slide 6: SYCL
	Slide 7
	Slide 8: Single C++ source for all architectures
	Slide 9: SYCL performance is comparable to native CUDA/HIP
	Slide 10: But should you even write your own kernels?
	Slide 11: oneMKL provides performance and portability
	Slide 12: The oneMKLs
	Slide 13: Pieces of the puzzle
	Slide 14: oneAPI and oneMKL
	Slide 15: oneMKL Interface Library
	Slide 16: Intel® oneMKL
	Slide 17: The oneMKLs
	Slide 18: oneMKL: capabilities
	Slide 19: Domains
	Slide 20: Backends
	Slide 21: Runtime dispatch
	Slide 22: Static dispatch
	Slide 23: oneMKL demo
	Slide 24: oneMKL: using it
	Slide 25: BLAS
	Slide 26: Random number generation
	Slide 27: DFT
	Slide 28: LAPACK
	Slide 29: CMake
	Slide 30: oneMKL: on the inside
	Slide 31: The runtime dispatch mechanism
	Slide 32: oneMKL: building it
	Slide 33: With DPC++
	Slide 34: oneMKL: gotchas
	Slide 35: oneMKL: gotchas
	Slide 36: oneMKL: gotchas
	Slide 37: Coming from Intel® MKL
	Slide 38: oneMKL: performance
	Slide 39: Performance
	Slide 40: Performance
	Slide 41: Performance
	Slide 42: Time to give it a go
	Slide 43: … But first!
	Slide 44: Hands-on with oneMKL
	Slide 45: Hints
	Slide 46
	Slide 47
	Slide 48: Performance benchmark details

