
ALCF DEVELOPER SESSIONS

QMCPACK: JOURNAL
TO EXASCALE ON
AURORA

erhtjhtyhy

YE LUO
Computational Scientist
Computational Science Division
Argonne National Laboratory

Apri 24th 2024, Chicago, IL

ACKNOWLEDGEMENT

▪ Lead PI: Paul Kent

▪ This research was supported by the Exascale

Computing Project (17-SC-20-SC), a joint project

of the U.S. Department of Energy’s Office of

Science and National Nuclear Security

Administration, responsible for delivering a

capable exascale ecosystem, including software,

applications, and hardware technology, to support

the nation’s exascale computing imperative.

▪ Many thanks to Jeongnim Kim@Intel for many

helps in developing/troubleshooting Intel software

Exascale Computing Project : application development

2

OUTLINE

▪ QMCPACK intro

▪ Redesign for performance portability

▪ QMCPACK on INTEL GPUs

▪ GPU and OpenMP porting tips

3

ELECTRONIC STRUCTURE METHODS
QMC can be the new sweet spot

4

2,000 10,000 100,00050

system

size

(electrons)

TB

N3

DFT

 N2-3

QMC

 N3-4

CC

 N7

CI

 N!

accuracy

(eV)

0.5+0.05-0.10.001-0.01exact

chemical

bonds

cohesion,

barriers
superconductivity,

magnetism

quantum

chemistry

not

ab initio

Time scale: picosecond = 10-12 seconds

Length scale: 10 nm = 10-8 meters

PETASCALE TO EXASCALE CHALLENGE
How large problem can we solve?

5

TiO2 polymorphs

216 atoms with 1536 electrons, 10 meV/f.u.

YL et al. New J. Phys. 18 113049 (2016)

Metal organic framework

153 atoms with 594 electrons, 10

meV total energy.

A Benali, YL, et al. J. Phys. Chem. C,

122, 16683 (2018)

What is next?

1. Solve faster and more

petascale problems

2. Solve much larger

problems

1k atoms

10k electrons

QMCPACK
◼ QMCPACK, is a modern high-performance open-

source Quantum Monte Carlo (QMC) simulation code

for electronic structure calculations of molecular, quasi-

2D and solid-state systems.

◼ The code is C/C++ and MPI+OpenMP(Threading) +

(OMPTarget/CUDA/HIP/SYCL)

◼ Monte Carlo: massive Markov chains (walkers)

evolving in parallel. 1st level concurrency. Good for MPI

and coarse level threads.

◼ Quantum: The computation in each walker can be

heavy when solving many body systems (electrons).

2nd level concurrency. Good for fine level threads and

SIMD.

◼ Math libraries: BLAS/LAPACK, HDF5, FFTW
7

DIFFUSION MONTE CARLO SCHEMATICS

8

Possible new configurationsOld configurations Random walking

New configurations

Population

w=0.8

w=1.6

w=2.4

w=0.3

Load balancing

communication

Walker

WALKER BASED PARALLELISM

▪ Weak scaling efficiency 99% on 2/3 Mira and 95% on almost full Titan.

▪ Weak scaling, fix work per node. Strong scaling, fix the total number of samples.

▪ Equilibration excluded.

Works extreme well on petascale supercomputers

9

S
tr
o
n
g
 s
c
a
lin
g
 s
p
e
e

u
p

 o e counts

i eal

 itan

 ira

 .

 .

 .

 .

 .

 .

e
a

s
c
a
lin
g
 e
ff
ic
ie
n
c
y

 o e counts

i eal

 itan

 ira

REDESIGN FOR PERFORMANCE PORTABILITY

10

CLASSIC CPU IMPLEMENTATION

11

seq.

seq.

Number of walkers
N

u
m

.
o
f
e
le

c
tr

o
n
s

C
la

s
s
ic

 C
P

U

d
ri
v
e
r

Target

problem

size spacepara.

CUDA-BASED GPU IMPLEMENTATION

12

Number of walkers

N
u
m

.
o

f
e

le
c
tr

o
n
s

Legacy CUDA driver

Target

problem

size space

seq.

seq.

batched

Diverge APIs

UNIFY BOTH IMPLEMENTATIONS

 um er of al ers

u
m

e
r
o
f
e
le
c
tr
o
n
s

e
g
a
c
y

U

ri
 e
r

 egacy U ri er

 arget pro lem

si e space.

 erformance

re uire

By design

13

 um er of al ers

u
m

e
r
o
f
e
le
c
tr
o
n
s

 erformance porta le

 atche ri er

 arget pro lem

si e space.

 erformance

re uire

NEW DESIGN WITH CROWDS

14

seq.

seq.

batched. GPU porting

para. threaded

Population

crowd

crowd

crowd

crowd

• lock-step walkers within a crowd

• Independent crowds

• Decay to legacy implementations

doi: 10.1109/HiPar56574.2022.00008.

OPENMP OFFLOAD GPU IMPLEMENTATION

▪ Multiple crowds (CPU threads) to launch kernels to GPUs

– Maximize GPU utilization. Overlapping compute and transfer by OpenMP.

▪ Use portable OpenMP target feature

– Portable on NVIDIA, AMD, Intel GPUs. Fallback on CPU as well.

– Multiple compilers. GNU, Clang, AOMP, NVHPC, OneAPI

▪ Specialized in SYCL/CUDA/HIP to call INTEL/NVIDIA/AMD accelerated libraries.

– MKL, cuBLAS/cuSolver, hipBLAS/rocSolver

A bit more software technology to handle GPUs

15

COMPUTATION WITHIN A CROWD

16

Move particle

Update

coordinate

Compute

distances

Update WF

Update

determinant

Compute Jastrow

factors

Compute Orbitals

OMPTarget CUDA/HIP/SYCL

ONE VS A FEW CROWDS

17

▪ 7 cores per GPU on OLCF

Summit

▪ Fixed 7 crowds

▪ Small walker count,

performance drops

▪ Large walker count,

performance improves.

SINGLE NODE THROUGHPUT
Aurora shines in performance

19

WEAK AND STRONG SCALING

20

STRESS TEST

▪ ECP FOM simulation

– 512 atom cell NiO

– ~1h weak scaling runs

▪ Scaling up

– 1 to 64 node runs on Sunspot

– 256 to 2048 nodes on Aurora. Successful on 512 nodes.

– Identified new issues

• Sporadic segfault in L0 runtime. Workaround SplitBcsCopy=0
• Sporadic segfault in SYCL runtime when called from MKL. Awaiting Aurora

to verify fixes provided by Intel.

21

GPU AND OPENMP PORTING TIPS

22

MULTI-THREADED OFFLOAD

▪ Using pinned memory to enable true asynchronous transfer

– Keep CPU cores submitting work to GPUs.

– Method 1. Pin host memory using vendor APIs like cudaHostRegister

– Method 2. allocated pinned memory using vendor APIs like

sycl::aligned_alloc_device<T>. github#3973

– Method 3. Use OpenMP extension llvm/omp_target_alloc_host (supported

by icx/icpx)

▪ Avoid allocating/deallocating GPU memory on the fly

– Allocating/deallocating operations are very slow

– Serialization prevents concurrent execution.

A few more tips

23

USING L0 COMMANDLISTIMMEDIATE

▪ Both OpenMP and SYCL are built on top of LevelZero/UnifiedRuntime

– omman list (ol) an “imme iate” comman list (ne)

▪ Open s itch to “imme iate” comman list y efault

– Used like a CUDA stream

– Enqueue H2D/Kernel/D2H in a single shot and reduce time spent on L0

runtime.

▪ SYCL in-order queue

– Use sycl::property::queue::in_order() when constructing the queue.

github/#4663

– Reduce effort for porting algorithms using CUDA streams.

– No need of managing events by users. github/#4738

Low latency kernel submission

24

SYCL AND OPENMP INTEROPERABILITY

▪ QMCPACK uses OpenMP to generate L0 device and context.
#pragma omp interop device(id) init(prefer_type("level_zero"), targetsync : interop)

auto hPlatform = omp_get_interop_ptr(interop, omp_ipr_platform, &err);

auto hContext = omp_get_interop_ptr(interop, omp_ipr_device_context, &err);

auto hDevice = omp_get_interop_ptr(interop, omp_ipr_device, &err);

▪ Build SYCL objects
sycl::ext::oneapi::level_zero::make_platform(reinterpret_cast<pi_native_handle>(hPlatform));

sycl::ext::oneapi::level_zero::make_device(sycl_platform,

reinterpret_cast<pi_native_handle>(hDevice));

default_device_queue =

std::make_unique<sycl::queue>(visible_devices[sycl_default_device_num].get_context(),

 visible_devices[sycl_default_device_num].get_device(),

 sycl::property::queue::in_order());

QMCPACK github #4382

25

Keep a per device

default queue for non-

critical use

GPU MEMORY QUERY

▪ Not on default.

– SYCL only code, user initializes sysman.

– OpenMP code, Need environment variable ZES_ENABLE_SYSMAN=1

▪ get_info<sycl::ext::intel::info::device::free_memory>()

– SYCL extension

QMCPACK Github #4692

26

MANAGING SYCL QUEUES

▪ One per device default queue for managing memory allocation and occasional

GPU calls

▪ Concurrent jobs create their own queues from context and device. Do not copy

queues

▪ Use in-order queue

See qmcpack/src/Platforms/SYCL

27

sycl::queue SYCLDeviceManager::createQueueDefaultDevice() const

{

 return sycl::queue(visible_devices[sycl_default_device_num].get_context(),

 visible_devices[sycl_default_device_num].get_device(),

 sycl::property::queue::in_order());

}

SUMMARY

▪ QMCPACK was ported for Intel GPUs on Aurora with

– OpenMP offload. Mostly validating compilers and runtime libraries.

– Minimal SYCL code for optimal performance.

– Using MKL libraries. Validating this correctness and performance.

▪ The overall performance portability strategy fits well on Intel software and

hardware.

– We achieved good performance which paves the way for the success of

Aurora.

– There will be further performance gain as we keep improving QMCPACK and

software for intel GPUs.

28

	Slide 1: QMCPACK: Journal to EXASCALE on Aurora
	Slide 2: acknowledgement
	Slide 3: Outline
	Slide 4: Electronic Structure Methods
	Slide 5: Petascale to Exascale Challenge
	Slide 7
	Slide 8: Diffusion Monte Carlo Schematics
	Slide 9: Walker based parallelism
	Slide 10
	Slide 11: Classic CPU implementation
	Slide 12: CUDA-based GPU implementation
	Slide 13: Unify both implementations
	Slide 14: New design with Crowds
	Slide 15: OpenMP offload GPU implementation
	Slide 16: Computation within a crowd
	Slide 17: One vs a few crowds
	Slide 19: Single node throughput
	Slide 20: Weak and strong scaling
	Slide 21: Stress test
	Slide 22
	Slide 23: Multi-threaded offload
	Slide 24: Using L0 commandlistimmediate
	Slide 25: SYCL and OpenMp interoperability
	Slide 26: GPU memory query
	Slide 27: Managing SYCL Queues
	Slide 28: Summary
	Slide 29

