
Hands-on Breakout: Darshan
Shane Snyder
Argonne National Laboratory

ALCF Hands-on HPC Workshop, Day 3
October 12, 2023

Argonne Leadership Computing Facility2

Understanding I/O problems in your application

Example questions:
❏ How much of your run time is spent reading and writing files?
❏ Does it get better, worse, or is it the same as you scale up?
❏ Does it get better, worse, or is it the same across platforms?
❏ How should you prioritize I/O tuning to get the most bang for

your buck?

We recommend using a tool called Darshan as a starting point.

In this hands-on session, we’ll cover:
1. Darshan background
2. Darshan usage on HPC systems (e.g., ALCF Polaris)
3. Darshan analysis tool insights
4. General HPC I/O best practices and tuning considerations

Argonne Leadership Computing Facility3

What is Darshan?

Darshan is a scalable HPC I/O characterization tool. It captures a concise
picture of application I/O behavior with minimal overhead.

★ Widely available
‒ Deployed at most large supercomputing sites
‒ Including most systems at ALCF, OLCF, and NERSC

★ Easy to use
‒ No changes to code or development process
‒ Negligible performance impact: just “leave it on”

★ Produces a summary of I/O activity for every job
‒ This is a great starting point for understanding your application’s data usage
‒ Includes counters, timers, histograms, etc.

Argonne Leadership Computing Facility4

How does Darshan work?

Two primary components:
1. Darshan runtime library

○ Instrumentation modules: lightweight
wrappers (interposed at link or run time)
intercept application I/O calls and record
statistics about file accesses
‒ File records are stored in bounded,

compact memory on each process

○ Core library: aggregate statistics when the
application exits and generate a log file
‒ Collect, filter, compress records and write a

single summary file for the job

Figure courtesy Jakob Luettgau (UTK)

Argonne Leadership Computing Facility5

How does Darshan work?

Two primary components:
1. Darshan runtime library

Figure courtesy Jakob Luettgau (UTK)

NOTE: Though traditionally
restricted to MPI apps, recent
Darshan versions can often be
made to work in non-MPI
contexts. More on this later…

Argonne Leadership Computing Facility6

How does Darshan work?

Two primary components:
2. Darshan log analysis tools

○ Tools and interfaces to inspect and
interpret log data
‒ PyDarshan command line utilities like

the new job summary tool
‒ Python APIs for usage in custom tools,

Jupyter notebooks, etc.
‒ Legacy C-based tools/library

Figure courtesy Jakob Luettgau (UTK)

Argonne Leadership Computing Facility

Using Darshan

Argonne Leadership Computing Facility8

Using Darshan

○ We’ll consider ALCF Polaris as an example in the following slides.

○ The workshop repo includes Darshan hands on examples that are configured for use on
Polaris.
‒ https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop
‒ See the darshan-hands-on directory

○ Darshan deployments on other HPC systems are very similar. The most likely differences
are:
‒ Location of log files (where to find data after your job completes)
‒ Analysis utility availability (usually easiest to just copy logs to your workstation to analyze)
‒ Loading the Darshan module (if it’s not already there by default)

○ We’ll briefly cover differences on other notable DOE systems after the Polaris example.

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

Argonne Leadership Computing Facility9

Using Darshan on Polaris: load the software

The darshan-hands-on
directory in the workshop

GitHub repo includes a script
to configure your

environment with the tools
needed for Darshan analysis.

NOTE: This additional setup
script is manually loading the
Darshan module, which is
not yet enabled by default on
Polaris – we are working on
making this automatic!

Argonne Leadership Computing Facility10

Using Darshan on Polaris: load the software

Use “module list” to see
a list of software loaded in

your environment.

Darshan 3.4.3 should now
be loaded.

The darshan-hands-on
directory in the workshop

GitHub repo includes a script
to configure your

environment with the tools
needed for Darshan analysis.

Argonne Leadership Computing Facility11

Using Darshan on Polaris: load the software

These steps are similar, and often
cases easier, on other HPC platforms

where Darshan is deployed:

● Theta/Summit: Darshan module
loaded by default

● Perlmutter: Darshan can be
manually loaded with ‘module
load darshan’

Always check facility
documentation!

Argonne Leadership Computing Facility12

Using Darshan on Polaris: instrument your code

* Well, almost. There is one caveat: in the default Darshan configuration, your application
must call MPI_Init() and MPI_Finalize() to generate a log.

Compile and run
your application!

That’s all there is to it; Darshan does the rest.*

From the helloworld
example in the

darshan-hands-on
directory in the

workshop GitHub repo

Argonne Leadership Computing Facility13

Using Darshan on Polaris: find your log file

All Darshan logs are placed in a central location. The ‘darshan-config --log-path’
command will provide the log directory location.

Go to subdirectory for the year / month / day your job executed.

Be aware of time zone (or just check adjacent days)!
Polaris, for example, uses the GMT time zone and will roll over

to the next day at 7pm local time.

Argonne Leadership Computing Facility14

Using Darshan on Polaris: find your log file

File name includes your username,
app name, and job ID.

For convenience, users often
copy logs somewhere else to

save/analyze.

All Darshan logs are placed in a central location. The ‘darshan-config --log-path’
command will provide the log directory location.

Argonne Leadership Computing Facility15

Using Darshan on Polaris: analyze log

After locating your log, users can utilize Darshan log analysis tools for gaining
insights into application I/O behavior. PyDarshan tools likely aren’t available

everywhere, but traditional tools like darshan-parser should be.

If you know what you’re looking for, darshan-parser can be a quick way to extract
important I/O details from a log, e.g., the 10 most heavily written files, but it is not super user

friendly…

Argonne Leadership Computing Facility16

Using Darshan on Polaris: generate summary report

The Polaris environment setup script in the
darshan-hands-on directory in the

workshop GitHub repo also enables support
for PyDarshan analysis tools.

Generate an HTML summary report with
PyDarshan using the following command:

‘python -m darshan summary <log_path>’.

Argonne Leadership Computing Facility17

Using Darshan on Polaris: generate summary report

Generate an HTML summary report with
PyDarshan using the following command:

‘python -m darshan summary <log_path>’.

If successful, the tool should generate an HTML report matching the input log file name.

To analyze, it’s likely easiest to copy the report to your own workstation to view in a browser.

The Polaris environment setup script in the
darshan-hands-on directory in the

workshop GitHub repo also enables support
for PyDarshan analysis tools.

Argonne Leadership Computing Facility18

Using Darshan on Polaris: generate summary report

Generate an HTML summary report with
PyDarshan using the following command:

‘python -m darshan summary <log_path>’.

NOTE: Ignore these Python warnings about version requirements,
they should not cause any issues with report generation

The Polaris environment setup script in the
darshan-hands-on directory in the

workshop GitHub repo also enables support
for PyDarshan analysis tools.

Argonne Leadership Computing Facility19

What about other HPC systems?

○ Perlmutter (NERSC):

‒ How to enable: ‘module load darshan’

‒ Log directory: /pscratch/darshanlogs/

○ Summit (OLCF):

‒ How to enable: automatic

‒ Log directory: /gpfs/alpine/darshan/summit

If Darshan is not available on a system, it can be
installed via Spack or directly from source. Darshan

is provided as 2 separate packages in Spack:
● darshan-runtime - library for instrumenting

apps
● darshan-util - tools for analyzing Darshan log

files

PyDarshan is available on PyPI (e.g., ‘pip
install darshan’) and also in Spack

See our website for more details:
https://www.mcs.anl.gov/research/projects/darshan

Argonne Leadership Computing Facility

Analyzing Darshan logs

Argonne Leadership Computing Facility21

The PyDarshan job summary tool
generates an HTML report

containing graphs, tables, and
performance estimates

characterizing the I/O workload of
the application

We will summarize some of the
highlights in the following slides

Job analysis example

Argonne Leadership Computing Facility22

Job analysis: high-level job info

Executable name
and job date

Detailed job
metadata

Argonne Leadership Computing Facility23

Job analysis: I/O heatmaps

Heatmaps showcase application I/O intensity (r+w volume)
across time, ranks, and interfaces – helpful for identifying

hot spots, I/O and compute phases, etc.

Argonne Leadership Computing Facility24

Job analysis: I/O heatmaps

Heatmaps showcase application I/O intensity (r+w
volume) across time, ranks, and interfaces – helpful for

identifying hot spots, I/O and compute phases, etc.

Sum time slice
over ranks

Sum rank over
time slices

Argonne Leadership Computing Facility25

Job analysis: I/O heatmaps

This application demonstrates a couple of notable I/O characteristics:
● I/O imbalance across MPI processes
● Collective MPI-IO accesses transformed to subset of

“aggregator” ranks at POSIX level

Argonne Leadership Computing Facility26

Job analysis: I/O cost

I/O cost indicates how much time on
average was spent reading, writing,
and doing metadata across different

I/O interfaces

If I/O cost is a small portion of
application runtime, tuning efforts are
likely to have a relatively small impact

Argonne Leadership Computing Facility27

Job analysis: Per-interface statistics

Stats available for various
I/O APIs: POSIX, MPI-IO,
STDIO, HDF5, PnetCDF

Aggregate stats for
interface, as well as a

performance estimate

Number of files of
different types (total,

read-only, read/write, etc.)
recorded by Darshan

Argonne Leadership Computing Facility28

sequential: greater than
previous offset
consecutive: immediately
following previous offset

★

Job analysis: Per-interface statistics

Operation counts provide the relative totals of
different types of I/O operations

Lots of metadata operations (open, stat, seek,
etc.) could be a sign of poorly performing I/O

Access pattern indicates whether read/write
operations progress sequentially or consecutively★

through the file

More random access patterns can be expensive
for some types of storage

Argonne Leadership Computing Facility29

Job analysis: Per-interface statistics

Details on access sizes are provided to better understand
granularity of application read/write accesses

In general, larger access sizes (e.g., O(MiBs)) perform
better with most storage systems

Argonne Leadership Computing Facility30

Job analysis: Data access by category

Data accesses, in terms of total files
read/written and total bytes read/written,

binned by different categories:
● FS mount points (e.g., /home,

/scratch)
● standard streams (e.g., STDOUT)
● object storage pools
● etc.

Inform on job’s general usage of
different storage resources

Argonne Leadership Computing Facility31

Job analysis: additional help

Remember to contact facility
support staff for help! The Darshan
job summary can be a good discussion
starter if you aren’t sure how to
proceed with performance tuning or
problem solving.

Argonne Leadership Computing Facility32

Darshan: a quick recap

○ These slides have thus far covered some basic Darshan usage and tips.

○ Key takeaways:

‒ Tools are available to help you understand how your application accesses data.
‒ The simplest starting point is Darshan.
‒ It’s likely already instrumenting your application, or can quickly be made to do so.
‒ You will probably start with an HTML report generated using PyDarshan.

○ Refer to documentation and support channels provided by the Darshan team and/or
facilities staff.

‒ darshan-io.slack.com

https://darshan-io.slack.com

Argonne Leadership Computing Facility

Hands-on
Intermission 1

Are there any initial questions/comments about Darshan or how to use it?

As a starting point, you can try running an example program with Darshan
instrumentation enabled to ensure the toolchain works as expected
○ Follow instructions at darshan-hands-on/README.md to setup environment,

compile and run examples, find Darshan output, and run analysis tools
– You’ll have to copy generated HTML reports to your own workstation to

view in a browser using scp command
○ Use the helloworld example or try it with an application of your own

❏ How many files did the application open?
❏ How much data did it read, and how much data did it write?
❏ What approximate I/O performance did it achieve?

Argonne Leadership Computing Facility

HPC I/O insights with
Darshan

Argonne Leadership Computing Facility35

As we discussed this morning, the HPC I/O
landscape is deep and vast

○ High-level data abstractions: HDF5, PnetCDF
○ I/O middleware: MPI-IO
○ Storage systems: Lustre, GPFS, DAOS
○ Storage hardware: HDDs, SSDs, SCM

HPC applications themselves are evolving and
encountering new data management challenges

Understanding I/O behavior in this environment is
difficult, much less turning observations into
actionable I/O tuning decisions

I/O Hardware

Application

Storage System

Data Model Support

Transformations

Technologies

S
to

ra
ge

 a
bs

tra
ct

io
ns

A quick survey of the HPC I/O landscape
A complex data management ecosystem

Argonne Leadership Computing Facility36

As we discussed this morning, the HPC I/O
landscape is deep and vast

○ High-level data abstractions: HDF5, PnetCDF
○ I/O middleware: MPI-IO
○ Storage systems: Lustre, GPFS, DAOS
○ Storage hardware: HDDs, SSDs, SCM

HPC applications themselves are evolving and
encountering new data management challenges

Understanding I/O behavior in this environment is
difficult, much less turning observations into
actionable I/O tuning decisions

Darshan can help navigate this complexity by
characterizing I/O behavior across the I/O stack

I/O Hardware

Application

Storage System

Data Model Support

Transformations

Technologies

S
to

ra
ge

 a
bs

tra
ct

io
ns

A quick survey of the HPC I/O landscape
A complex data management ecosystem

Argonne Leadership Computing Facility37

I/O Hardware

Application

Storage System

Data Model Support

Transformations

*Note: HDF5 instrumentation is not typically enabled for facility
Darshan installs – you will need to install this version yourself

HDF5 stats*:
○ Accessed files/datasets
○ Operation counts
○ Total read/write volumes
○ Common access info

(including details of
hyperslab accesses)

○ Chunking parameters
○ Dataset dimensionality and

size
○ MPI-IO usage
○ I/O timing

A look under the hood of an HPC application

You have already heard
some basics about Darshan,
a powerful tool for users to
better understand and tune
their I/O workloads
Darshan provides many
helpful stats across multiple
layers of the I/O stack that
are critical to understanding
application I/O behavior

Characterizing HPC I/O workloads with Darshan

Argonne Leadership Computing Facility38

I/O Hardware

Application

Storage System

Data Model Support

Transformations

MPI-IO stats:
○ Operation counts (open,

read, write, sync)
○ Collective and

independent I/O usage
○ Total read/write volumes
○ Access size info

‒ Common values
‒ Histograms

○ I/O timing

Characterizing HPC I/O workloads with Darshan

You have already heard
some basics about Darshan,
a powerful tool for users to
better understand and tune
their I/O workloads
Darshan provides many
helpful stats across multiple
layers of the I/O stack that
are critical to understanding
application I/O behavior

A look under the hood of an HPC application

Argonne Leadership Computing Facility39

I/O Hardware

Application

Storage System

Data Model Support

Transformations

POSIX stats:
○ Operation counts (open,

read, write, seek, stat)
○ Total read/write volumes
○ File alignment
○ Access size/stride info

‒ Common values
‒ Histograms

○ I/O timing

Characterizing HPC I/O workloads with Darshan

You have already heard
some basics about Darshan,
a powerful tool for users to
better understand and tune
their I/O workloads
Darshan provides many
helpful stats across multiple
layers of the I/O stack that
are critical to understanding
application I/O behavior

A look under the hood of an HPC application

Argonne Leadership Computing Facility40

I/O Hardware

Application

Storage System

Data Model Support

Transformations

Lustre stats:
○ Data server (OST) and

metadata server (MDT)
counts

○ Stripe size/width
○ OST list serving a file

Characterizing HPC I/O workloads with Darshan

You have already heard
some basics about Darshan,
a powerful tool for users to
better understand and tune
their I/O workloads
Darshan provides many
helpful stats across multiple
layers of the I/O stack that
are critical to understanding
application I/O behavior

A look under the hood of an HPC application

Argonne Leadership Computing Facility41

I/O Hardware

Application

Storage System

Data Model Support

Transformations

Let’s see how Darshan
can be leveraged in some
practical use cases that

demonstrate some
general best practices in

tuning HPC I/O
performance

Characterizing HPC I/O workloads with Darshan

You have already heard
some basics about Darshan,
a powerful tool for users to
better understand and tune
their I/O workloads
Darshan provides many
helpful stats across multiple
layers of the I/O stack that
are critical to understanding
application I/O behavior

A look under the hood of an HPC application

Argonne Leadership Computing Facility42

For some parallel file systems like Lustre, users have direct control over file striping
parameters

Bad news: Users may have to have some knowledge of the file system to get good I/O
performance
Good news: Users can often get higher I/O performance than system defaults with thoughtful
tuning -- file systems aren’t perfect for every workload!

Tuning the storage system
Ensuring storage resources match application I/O needs

Argonne Leadership Computing Facility43

Tuning decisions can and should be made independently for different file types

Simulation
bulk data

Simulation clients write
data to 1 storage server

Tuning the storage system
Ensuring storage resources match application I/O needs

Argonne Leadership Computing Facility44

Tuning decisions can and should be made independently for different file types

Large application datasets should ideally be distributed across as many storage resources as
possible

Simulation clients load balance
writes across multiple servers

Simulation
bulk data

Simulation
bulk data

Simulation clients write
data to 1 storage server

Tuning the storage system
Ensuring storage resources match application I/O needs

Argonne Leadership Computing Facility45

Tuning decisions can and should be made independently for different file types

On the other hand, smaller files often benefit from being stored on a single server

Simulation
config files

Simulation clients read config
data from 1 storage server

Tuning the storage system
Ensuring storage resources match application I/O needs

Argonne Leadership Computing Facility46

Tuning decisions can and should be made independently for different file types

On the other hand, smaller files often benefit from being stored on a single server

Simulation
config files

Simulation clients read config
data from 1 storage server

Better yet, limit storage contention by
having 1 client read data and distribute

using communication (e.g., MPI)

Simulation
config files

Tuning the storage system
Ensuring storage resources match application I/O needs

Argonne Leadership Computing Facility47

Be aware of what file system settings are available to you and don’t assume system defaults
are always the best… you might be surprised what you find

○ ALCF Polaris/Theta and NERSC Perlmutter Lustre scratch file systems both have a default
stripe width of 1 (i.e., files are stored on one server by default)

256 process (4 node)
h5bench1 runs on NERSC

Perlmutter

h5bench contains lots of
parameters for controlling

characteristics of generated
HDF5 workloads.

MPI-IO POSIX

1. https://github.com/hpc-io/h5bench

Tuning the storage system
Ensuring storage resources match application I/O needs

Argonne Leadership Computing Facility48

Be aware of what file system settings are available to you and don’t assume system defaults
are always the best… you might be surprised what you find

○ ALCF Polaris/Theta and NERSC Perlmutter Lustre scratch file systems both have a default
stripe width of 1 (i.e., files are stored on one server by default)

All I/O funneled through
rank 0

MPI-IO collective I/O
driver for Lustre assigns

dedicated aggregators for
each stripe, yielding a

single aggregator for files
of 1 stripe

Tuning the storage system
Ensuring storage resources match application I/O needs

MPI-IO POSIX

Argonne Leadership Computing Facility49

MPI-IO POSIX

1
stripe

16
stripes

Tuning the storage system
Ensuring storage resources match application I/O needs

Manually setting the stripe width
to 16 yields more I/O
aggregators and better
performance:

> lfs setstripe -c 16 testFile

Argonne Leadership Computing Facility50

MPI-IO POSIX

Manually setting the stripe width
to 16 yields more I/O
aggregators and better
performance:

> lfs setstripe -c 16 testFile

4x performance improvement!

1
stripe

16
stripes

Tuning the storage system
Ensuring storage resources match application I/O needs

1341.13
MiB/s

5571.27
MiB/s

Argonne Leadership Computing Facility51

Consult facilities documentation for established best practice!

Perlmutter (NERSC) docs
providing commands to set stripe

params for various file types

OLCF presentation on Orion storage
system detailing usage of Lustre’s new

progressive file layout mechanism

Tuning the storage system
Ensuring storage resources match application I/O needs

Argonne Leadership Computing Facility52

Consult facilities documentation for established best practice! Sometimes you may even need
to experiment yourself.

https://github.com/radix-io/io-sleuthing/tree/main/examples/striping

128-node example of the IOR
benchmark using various stripe

counts on ALCF Polaris.

For more I/O intensive programs,
it’s typically better to err on the

side of more storage servers. The
following command stripes across

all servers:

> lfs setstripe -c -1 testFile

Tuning the storage system
Ensuring storage resources match application I/O needs

https://github.com/radix-io/io-sleuthing/tree/main/examples/striping

Argonne Leadership Computing Facility53

Users may also need to pay close attention to file system alignment when issuing I/O
accesses to a file

○ Accesses that are not aligned can introduce performance inefficiencies on file systems

Tuning low-level (POSIX) file I/O
Making efficient use of a no-frills I/O API

Argonne Leadership Computing Facility54

Users may also need to pay close attention to file system alignment when issuing I/O
accesses to a file

○ Accesses that are not aligned can introduce performance inefficiencies on file systems

For Lustre, performance can be maximized by aligning I/O to stripe boundaries:

Unaligned I/O requests can span
multiple servers and introduce

inefficiencies in storage protocols
File:

Tuning low-level (POSIX) file I/O
Making efficient use of a no-frills I/O API

Argonne Leadership Computing Facility55

File:
Instead, ensure client accesses are
well-aligned to avoid Lustre server

contention
File:

Tuning low-level (POSIX) file I/O
Making efficient use of a no-frills I/O API

Users may also need to pay close attention to file system alignment when issuing I/O
accesses to a file

○ Accesses that are not aligned can introduce performance inefficiencies on file systems

For Lustre, performance can be maximized by aligning I/O to stripe boundaries:

Argonne Leadership Computing Facility56

Consider a simple 10-process (10-node) NERSC Cori example where processes write in an
interleaved fashion to a single shared file

aligned

Use Darshan’s DXT tracing module to get details about each
individual write access – more details on DXT usage coming

soon

Tuning low-level (POSIX) file I/O
Making efficient use of a no-frills I/O API

Argonne Leadership Computing Facility57

aligned

Each access is aligned to the Lustre stripe size (1 MiB)

Each process interacts with a single Lustre server (OST)

Tuning low-level (POSIX) file I/O
Making efficient use of a no-frills I/O API

Consider a simple 10-process (10-node) NERSC Cori example where processes write in an
interleaved fashion to a single shared file

Argonne Leadership Computing Facility58

unaligned

Each access spans two Lustre stripes due to unaligned offsets

Each process interacts with two Lustre servers (OSTs)

Tuning low-level (POSIX) file I/O
Making efficient use of a no-frills I/O API

Consider a simple 10-process (10-node) NERSC Cori example where processes write in an
interleaved fashion to a single shared file

Argonne Leadership Computing Facility59

Even in this small workload, we pay a nearly 20% performance penalty when I/O accesses
are not aligned to file stripes (1 MB)

aligned

unaligned

310.14
MiB/s

380.28
MiB/s

Tuning low-level (POSIX) file I/O
Making efficient use of a no-frills I/O API

Argonne Leadership Computing Facility60

Accounting for subtle I/O performance factors like file alignment can be a painstaking
process…

High-level I/O libraries like HDF5 can help mask much of the complexity needed for
transforming scientific computing I/O workloads into performant POSIX-level file system
accesses – don’t reinvent the wheel, use high-level I/O libraries wherever you can!

Tuning low-level (POSIX) file I/O
Making efficient use of a no-frills I/O API

Argonne Leadership Computing Facility61

The HDF5 library provides a chunking mechanism to partition user datasets into contiguous
chunks in the underlying file

○ Users can greatly improve performance of partial dataset I/O operations by choosing
chunking parameters that match expected access patterns

Tuning high-level (HDF5) data access
Optimizing application interactions with the I/O stack

Argonne Leadership Computing Facility62

By default, HDF5 will store the
dataset contiguously row-by-row
(i.e., row-major format) in the file

Tuning high-level (HDF5) data access
Optimizing application interactions with the I/O stack

The HDF5 library provides a chunking mechanism to partition user datasets into contiguous
chunks in the underlying file

○ Users can greatly improve performance of partial dataset I/O operations by choosing
chunking parameters that match expected access patterns

Argonne Leadership Computing Facility63

If dataset access patterns do not
suit a simple row-major storage

scheme, chunking can be applied to
map chunks of dataset data to
contiguous regions in the file

column-based block-based

Tuning high-level (HDF5) data access
Optimizing application interactions with the I/O stack

The HDF5 library provides a chunking mechanism to partition user datasets into contiguous
chunks in the underlying file

○ Users can greatly improve performance of partial dataset I/O operations by choosing
chunking parameters that match expected access patterns

Argonne Leadership Computing Facility64

Consider a 256-process (4-node) Polaris example where each process exclusively writes a
2048x2048 block of the dataset (32 MB per-process, 8 GB total)

With no chunking, each process must issue
many smaller non-contiguous I/O requests

(solid lines) and seek around the file (dashed
lines), yielding low I/O performance

Tuning high-level (HDF5) data access
Optimizing application interactions with the I/O stack

Argonne Leadership Computing Facility65

256 individual
HDF5 writes

(1-per-process)
yields 500K+
POSIX writes

Tuning high-level (HDF5) data access
Optimizing application interactions with the I/O stack

Consider a 256-process (4-node) Polaris example where each process exclusively writes a
2048x2048 block of the dataset (32 MB per-process, 8 GB total)

Argonne Leadership Computing Facility66

With chunking applied, each process can
read their entire data block using one large,

contiguous access in the file

Tuning high-level (HDF5) data access
Optimizing application interactions with the I/O stack

Consider a 256-process (4-node) Polaris example where each process exclusively writes a
2048x2048 block of the dataset (32 MB per-process, 8 GB total)

Argonne Leadership Computing Facility67

Chunking results in
a much more
manageable

POSIX workload

 Nearly a 3x
performance

improvement!

Tuning high-level (HDF5) data access
Optimizing application interactions with the I/O stack

Consider a 256-process (4-node) Polaris example where each process exclusively writes a
2048x2048 block of the dataset (32 MB per-process, 8 GB total)

Argonne Leadership Computing Facility68

An alternative optimization forgoes chunking and uses collective I/O to improve the efficiency
of this block-style data access

○ Rely on MPI-IO layer collective buffering algorithm to generate contiguous storage
accesses and to limit number of clients interacting with storage system

With collective I/O enabled, designated aggregator
processes perform I/O on behalf of their peers,

and communicate their data using MPI calls

E.g., the green process sends its write data to the
blue process (aggregator), who then writes both of

their data in one big contiguous chunk

Tuning high-level (HDF5) data access
Optimizing application interactions with the I/O stack

Argonne Leadership Computing Facility69

Collective I/O
yields 26x

improvement
over no

chunking, and
9x improvement
over chunking!!!

Tuning high-level (HDF5) data access
Optimizing application interactions with the I/O stack

Consider a 256-process (4-node) Polaris example where each process exclusively writes a
2048x2048 block of the dataset (32 MB per-process, 8 GB total)

Argonne Leadership Computing Facility70

MPI-IO POSIX

Darshan I/O activity
heatmaps illustrate how

different the I/O behavior is
for the unoptimized

independent configuration
(top) and the most

performant collective I/O
configuration (bottom)

Tuning high-level (HDF5) data access
Optimizing application interactions with the I/O stack

Argonne Leadership Computing Facility71

I/O Interface Striping Alignment Collective I/O Chunking

HDF5 ✓ ✓ ✓ ✓

MPI-IO ✓ ✓ ✓ 𝘟

POSIX ✓ ✓- 𝘟 𝘟

Summarizing I/O tuning options
As a user of I/O interface X, what tuning vectors do I have?

Argonne Leadership Computing Facility72

I/O Interface Striping Alignment Collective I/O Chunking

HDF5 ✓ ✓ ✓ ✓

MPI-IO ✓ ✓ ✓ 𝘟

POSIX ✓ ✓- 𝘟 𝘟

Automatically align application
data and library metadata, if user

requests so

Collective I/O can
be automatically

aligned

POSIX I/O requires
manually aligning every

access

Summarizing I/O tuning options
As a user of I/O interface X, what tuning vectors do I have?

Argonne Leadership Computing Facility73

I/O Interface Striping Alignment Collective I/O Chunking

HDF5 ✓ ✓ ✓ ✓

MPI-IO ✓ ✓ ✓ 𝘟

POSIX ✓ ✓- 𝘟 𝘟

Just another reminder that high-level I/O libraries are here to make your life easier

○ I/O optimization strategies like collective I/O & chunking can net large performance
gains, especially when combined with striping and alignment optimizations

Summarizing I/O tuning options
As a user of I/O interface X, what tuning vectors do I have?

Argonne Leadership Computing Facility

Hands-on
Intermission 2

In the darshan-hands-on directory there are 2 more examples with A & B
versions: warpdrive & fidgetspinner
○ Follow instructions at darshan-hands-on/README.md to setup environment,

compile and run examples, find Darshan output, and run analysis tools
○ Note: these examples will require at least some understanding of the MPI-IO

library

See if you can spot the performance differences! Which version is faster? Why?
– Use Darshan job summary tool to compare I/O behavior
– Compare source code using diff to confirm

Argonne Leadership Computing Facility

Additional Darshan
tips and tricks

Argonne Leadership Computing Facility76

Darshan instrumentation beyond MPI

○ Historically, Darshan has only worked with MPI applications
‒ MPI_Init/MPI_Finalize used to bootstrap/shutdown Darshan

○ Darshan has been modified to use a secondary bootstrapping
mechanism that enables its use outside of MPI
‒ Based on GCC-specific library constructor/destructor attributes
‒ Only works for dynamically-linked executables!

○ To enable non-MPI mode, users must explicitly opt-in by setting the
DARSHAN_ENABLE_NONMPI environment variable
‒ A unique log will be generated for every process that executes
‒ Often best to limit instrumentation scope to the target executable:

Darshan
instrumentation

Argonne Leadership Computing Facility77

○ By default, Darshan captures a fixed set of counters for each file

○ With DXT, Darshan additionally traces every read/write operation (for POSIX and MPI-IO
interfaces)

○ Enable by setting DXT_ENABLE_IO_TRACE env variable

○ Finer grained instrumentation data comes at a cost of additional overhead and larger logs

Finer-grained details with Darshan: DXT tracing

Argonne Leadership Computing Facility78

○ By default, Darshan captures a fixed set of counters for each file

○ With DXT, Darshan additionally traces every read/write operation (for POSIX and MPI-IO
interfaces)

○ Enable by setting DXT_ENABLE_IO_TRACE env variable

○ Finer grained instrumentation data comes at a cost of additional overhead and larger logs

Trace includes the timestamp,
file offset, and size of every I/O

operation on every rank.

darshan-dxt-parser utility
can provide a raw text dump of

the trace

Finer-grained details with Darshan: DXT tracing

Argonne Leadership Computing Facility79

○ By default, Darshan captures a fixed set of counters for each file

○ With DXT, Darshan additionally traces every read/write operation (for POSIX and MPI-IO
interfaces)

○ Enable by setting DXT_ENABLE_IO_TRACE env variable

○ Finer grained instrumentation data comes at a cost of additional overhead and larger logs

Traces can be visualized using summary report
heatmaps or other custom tools like DXT Explorer

Finer-grained details with Darshan: DXT tracing

Argonne Leadership Computing Facility80

○ To reduce log file size, globally shared file records are reduced into a single
instrumentation record by default
‒ However, this slightly masks per-rank contributions to I/O

○ This behavior can be disabled by setting DARSHAN_DISABLE_SHARED_REDUCTION
environment variable

○ Allows for full accounting of per-rank contributions to shared files, if these details are
important (e.g., for understanding collective I/O algorithms)

Finer-grained details with Darshan: disabling shared
file reductions

Argonne Leadership Computing Facility81

Finer-grained details with Darshan: disabling shared
file reductions

○ To reduce log file size, globally shared file records are reduced into a single
instrumentation record by default
‒ However, this slightly masks per-rank contributions to I/O

○ This behavior can be disabled by setting DARSHAN_DISABLE_SHARED_REDUCTION
environment variable

○ Allows for full accounting of per-rank contributions to shared files, if these details are
important (e.g., for understanding collective I/O algorithms)

Rank -1 indicates a shared file record, with counters containing a reduced
value access all ranks (e.g., ~24.5 GiB total bytes written across all ranks)

Argonne Leadership Computing Facility82

○ To reduce log file size, globally shared file records are reduced into a single
instrumentation record by default
‒ However, this slightly masks per-rank contributions to I/O

○ This behavior can be disabled by setting DARSHAN_DISABLE_SHARED_REDUCTION
environment variable

○ Allows for full accounting of per-rank contributions to shared files, if these details are
important (e.g., for understanding collective I/O algorithms)

With shared reductions disabled, each rank retains their own record giving full insight
into per-rank contributions (rank 0 writes 157 MiB and rank 255 writes nothing)

Finer-grained details with Darshan: disabling shared
file reductions

Argonne Leadership Computing Facility83

○ To bound memory overheads, Darshan
imposes several internal memory limits
(total memory usage, per-module record
limits, etc.)

○ For some workloads, default limits may
be exceeded resulting in partial
instrumentation data

○ To offer user’s more control over memory
limits and instrumentation scope, Darshan
provides a comprehensive runtime
configuration system
‒ Environment variables or config files

Regular expressions can be specified to
control whether matching record name

patterns are included/excluded in
Darshan instrumentation

Darshan runtime library configuration

Argonne Leadership Computing Facility84

○ To bound memory overheads, Darshan
imposes several internal memory limits
(total memory usage, per-module record
limits, etc.)

○ For some workloads, default limits may
be exceeded resulting in partial
instrumentation data

○ To offer user’s more control over memory
limits and instrumentation scope, Darshan
provides a comprehensive runtime
configuration system
‒ Environment variables or config files

Settings are also offered to control total
per-process memory usage (8 MiB) and

per-module maximum record counts
(4000 POSIX records)

Darshan runtime library configuration

Argonne Leadership Computing Facility85

○ To bound memory overheads, Darshan
imposes several internal memory limits
(total memory usage, per-module record
limits, etc.)

○ For some workloads, default limits may
be exceeded resulting in partial
instrumentation data

○ To offer user’s more control over memory
limits and instrumentation scope, Darshan
provides a comprehensive runtime
configuration system
‒ Environment variables or config files

Additional settings allow control over
enabled/disabled modules, as well as

application names that should be
included/excluded from instrumentation

Darshan runtime library configuration

Argonne Leadership Computing Facility

Thank you!

Argonne Leadership Computing Facility

Bonus

Argonne Leadership Computing Facility88

Darshan-based analysis tools

Using Darshan as a starting point for developing new I/O analysis tools is attractive for
a couple of reasons:

1. Darshan is commonly deployed in production at many HPC sites, making its I/O
characterization data generally accessible to custom tools

2. Recent PyDarshan work has enabled much more agile development of Darshan-based
I/O analysis tools in Python

We will start by considering a couple of Darshan-based
I/O analysis tools: DXT Explorer and Drishti

Argonne Leadership Computing Facility89

DXT Explorer

○ Darshan does not offer much in terms of DXT trace
analysis tools beyond general I/O activity heatmaps

○ DXT Explorer★ is an interactive web-based trace
analysis tool for DXT data that was developed to
provide:
‒ Combined views of MPI-IO and POSIX activity
‒ Zoom in/out capabilities to focus on subsets of ranks

or specific time slices
‒ Contextual information about I/O calls
‒ Views based on operation type, size, and spatiality

○ Interactive trace analysis with DXT Explorer can enable
interesting new insights into app I/O behavior

github.com/hpc-io/dxt-explorer

docker pull hpcio/dxt-explorer

★ DXT Explorer was developed
by Jean Luca Bez (LBL). Slide
content also provided courtesy
of Jean Luca.

Bez, Jean Luca, et al. "I/O bottleneck detection and tuning: connecting the dots using interactive log
analysis." 2021 IEEE/ACM Sixth International Parallel Data Systems Workshop (PDSW). IEEE, 2021.

Argonne Leadership Computing Facility90

Explore the timeline
by zooming in and
out and observing

how the MPI-IO calls
are translated to the

POSIX layer.

For instance, you can
use this feature to
detect stragglers.

DXT Explorer

Argonne Leadership Computing Facility91

Explore the spatiality
of accesses in file by

each rank with
contextual

information.

Understand how
each rank is

accessing each file.

DXT Explorer

Argonne Leadership Computing Facility92

github.com/hpc-io/drishti-io

docker pull hpcio/drishti

★ Drishti was developed by
Jean Luca Bez (LBL). Slide
content also provided courtesy
of Jean Luca.

○ Darshan can capture detailed I/O characterization
data for an app, but translating this raw data to
actionable tuning feedback is a significant challenge

○ Drishti★ is a command-line tool to guide end-users
in optimizing I/O in their applications by detecting
typical I/O performance pitfalls and providing a set of
recommendations

○ Drishti checks each given Darshan log against 30+
heuristic triggers for various I/O issues and suggests
actions to take to resolve them
‒ 4 levels of triggers: high, warning, ok, info

Bez, Jean Luca, Hammad Ather, and Suren Byna. "Drishti: guiding end-users in the I/O optimization
journey." 2022 IEEE/ACM International Parallel Data Systems Workshop (PDSW). IEEE, 2022.

Drishti

Argonne Leadership Computing Facility93

Overall information about the
Darshan log and execution

Number of critical issues,
warning, and recommendations

Details on metadata and
data operations

Critical issue and
corresponding recommendation

for benchmark.h5

Drishti

