October 10-12, 2023

ALCF Hands-on HPC Workshop

Visualization From Data to Insight and Communication

Joseph Insley

Lead, Visualization & Data Analysis Argonne Leadership Computing Facility

Janet Knowles

Principal Software Engineering Specialist Argonne Leadership Computing Facility

Silvio Rizzi Computer Scientist

Argonne Leadership Computing Facility

Victor Mateevitsi

Computer Scientist Argonne Leadership Computing Facility

Here's the plan...

- Examples of visualizations
- Visualization tools and formats
- Data representations
- Visualization for debugging
- Advanced Rendering
- In Situ Visualization and Analysis
- Hands-on Breakout Session

Physics: Stellar Radiation

Data courtesy of: Lars Bildsten and Yan-Fei Jiang, University of California at Santa Barbara

ARTERIAL BLOOD FLOW

Data courtesy of: Amanda Randles, Duke University

Computational Fluid Dynamics

Data courtesy of Rao Kotamarthi, Ramesh Balakrishnan, Aleks Obabko, Argonne National Laboratory

Engineering Technologies: Combustion

Data courtesy of: Saumil Patel, Muhsin Ameen, Sicong Wu, Argonne National Laboratory; Tanmoy Chatterjee, GE Global Research

8 Argonne Leadership Computing Facility

Materials Science / Molecular

Data courtesy of: Paul Kent, Oak Ridge National Laboratory, Anouar Benali, Argonne National Laboratory

Visualization Tools and Data Formats

All Sorts of Tools

Visualization Applications

- -Vislt ★
- -ParaView*
- -EnSight

Domain Specific

-VMD, PyMol, Ovito, Vapor

APIs

-VTK*: visualization

-ITK: segmentation & registration

Analysis Environments

-Matlab

–Parallel R

Utilities

- -GnuPlot
- -ImageMagick*

-ffmpeg ★

ParaView & Vislt vs. vtk

ParaView & Vislt

- -General purpose visualization applications
- -GUI-based
- -Client / Server model to support remote visualization
- -Scriptable / Extendable
- -Built on top of vtk (largely)
- -In situ capabilities

vtk

- -Programming environment / API
- -Additional capabilities, finer control
- -Smaller memory footprint
- -Requires more expertise (build custom applications)

Data File Formats (ParaView & Vislt)

VTK	PLOT2D	Meta Image
Parallel (partitioned)	PLOT3D	Facet
VTK	SpyPlot CTH	PNG
VTK MultiBlock	HDF5 raw image	SAF
Hierarchical.	data	LS-Dyna
Hierarchical Box)	DEM	Nek5000
Legacy VTK	VRML	OVERFLOW
Parallel (partitioned)	PLY	paraDIS
legacy VTK	Polygonal Protein	PATRAN
EnSight files	Data Bank	PFI OTRAN
EnSight Master	XMol Molecule	Ρινίο
Server	Stereo Lithography	
Exodus	Gaussian Cube	
BYU	Raw (binary)	53D
XDMF	AVS	SAS

Tetrad UNIC VASP **ZeusMP** ANALYZE BOV GMV Tecplot Vis5D Xmdv XSF

Data Representations

Data Representations: Cutting Planes

Slice a plane through the data

Can apply additional visualization methods to resulting plane

Vislt & ParaView & vtk good at this

VMD has similar capabilities for some data formats

Data Representations: Volume Rendering

Data Representations: Contours (Isosurfaces)

A Line (2D) or Surface (3D), representing a constant value Vislt & ParaView:

- good at this

vtk:

- same, but again requires more effort

Data Representations: Glyphs

2D or 3D geometric object to represent point data

- Location dictated by coordinate
- 3D location on mesh
- 2D position in table/graph
 Attributes of graphical entity
 dictated by attributes of data
- color, size, orientation

Data Representations: Streamlines

From vector field on a mesh (needs connectivity) – Show the direction an element will travel in at any point in time. Vislt & ParaView & vtk good at this

Data Representations: Pathlines

From vector field on a mesh (needs connectivity) – Trace the path an element will travel over time. Vislt & ParaView & vtk good at this

Data Representations: Pathlines

From vector field on a mesh (needs connectivity) – Trace the path an element will travel over time. Vislt & ParaView & vtk good at this

Molecular Dynamics Visualization

VMD:

- Lots of domain-specific representations
- Many different file formats
- Animation
- Scriptable

Vislt & ParaView:

Limited support for these types of representations, but improving

VTK:

 Anything's possible if you try hard enough

Visualization for Debugging

Visualization for Debugging

Visualization for Debugging

Visualization as Diagnostics: Color by Thread ID

Advanced Rendering

Intel[®] oneAPI Rendering Toolkit ("Render Kit"/"Render Framework") Open Source Software for Advanced Rendering and Visualization

29 Argonne Leadership Computing Facility

Slide courtesy of Intel Visualization Team

Internal Combustion Engine Simulation

TCC Engine Apparatus

Fluid Dynamics Simulation

Goal

Provide context to tell the story/explain the science Integrate production tools into the existing visualization pipeline Tools used:

- ParaView
- Maya
- Substance Painter
- V-Ray
- Custom scripts and HPC Resources
- ffmpeg
- Premiere/After Effects

THE VISUALIZATION PIPELINE

Overview

In Situ Visualization and Analysis

Five orders of magnitude between compute and I/O capacity on Titan Cray system at ORNL

What are the problems?

- Not enough I/O capacity on current HPC systems, and the trend is getting worse.
- If there's not enough I/O, you can't write data to storage, so you can't analyze it: <u>lost science.</u>
- Energy consumption: it costs a lot of power to write data to disk.
- Opportunity for doing better science (analysis) when have access to full spatiotemporal resolution data.

In Situ Frameworks and Infrastructures at ALCF

Name	Description	Contact person at ATPESC
ALPINE	In Situ algorithms and infrastructure for the Exascale Computing Project	Silvio Rizzi, Cyrus Harrison
ASCENT	A flyweight in situ visualization and analysis runtime for multi-physics HPC simulations	Cyrus Harrison
SENSEI	Write once run anywhere. Multiple backends. MxN in transit communication patterns	Silvio Rizzi, Joe Insley
ParaView/Catalyst	<i>In situ</i> use case library, with an adaptable application programming interface (API), that orchestrates the delicate alliance between simulation and analysis and/or visualization tasks	Dan Lipsa
Libsim	Originally developed to facilitate interactive connections from Vislt to running simulations	Cyrus Harrison
SmartSim	SmartSim is a software framework that facilitates the convergence of numerical simulations and AI workloads on heterogeneous architectures	Silvio Rizzi

Ascent

- Flyweight design, minimizes dependencies
- Data model based on Conduit from LLNL
- Vis and analysis algorithms implemented in VTK-m

// Run Ascent Ascent ascent; ascent.open(); ascent.publish(data); ascent.execute(actions); ascent.close();

Slide courtesy of the Ascent team

SENSEI: Write once run everywhere

- "Write once, run everywhere" design
- Data model based on VTK from Kitware
- Supports a variety of backends, including ParaView/Catalyst, VisIt/LibSim, ADIOS, Python
- MxN in transit capabilities

SmartSim Overview

The SmartSim open-source library enables scientists, engineers, and researchers to embrace a "data-in-motion" philosophy to accelerate the convergence of Al/data science techniques and HPC simulations SmartSim enables simulations to be used as engines within a system, producing data, consumed by other services enable new applications

- Embed machine learning training and inference with existing in Fortran/C/C++ simulations
- Communicate data between C, C++, Fortran, and Python applications
- Analyze and visualize **data streamed** from **HPC applications** while they are **running**
- Launch, configure, and coordinate complex simulation, analysis, and visualization workflows

All of these can be done without touching the filesystem, i.e. data-in-motion

41 Argonne Leadership Computing Facility

slide courtesy of the HPE SmartSim team

Infrastructures

VTK-m's main thrust: a write-once-run-everywhere framework

43 Argonne Leadership Computing Facility

Slide courtesy of the ECP VTK-m project

What is Cinema?

- **Cinema** is part of an integrated workflow, providing a method of extracting, saving, analyzing or modifying and viewing complex data artifacts from large scale simulations.
 - If you're having difficulty exploring the complex results from your simulation, Cinema can help.
- The Cinema 'Ecosystem' is an integrated set of writers, viewers, and algorithms that allow scientists to export, analyze/modify and view Cinema databases.
 - This ecosystem is embodied in widely used tools (ParaView, Vislt, Ascent) and the database specification.

In Situ Computational Fluid Dynamics

Team: Paul Fisher et al.

NekRS

- CFD code
- Simulates turbulent incompressible or low Mach-number flows with heat transfer and species transport.
- Supports heterogeneous platforms
- Legacy code: Nek5000

As the resolution of the simulation increases, scientists turn to performing analysis in situ, doing their analysis while data is still resident in memory. Such capabilities enable study of turbulence statistics at these extremely high resolutions.

NekRS + Ascent

- Data is passed by reference (zero-copy)
 - CPU -> CPU or GPU -> GPU
- Ascent is disabled by default
 - Binary is bit by bit identical with non-instrumented code
- Full functionality of Ascent at your disposal
- Closely working with NekRS team, who are testing the instrumentation and providing feedback

									,
prossure	70.103.	01 Dr	iver	Version:	470.10	3.01	CUDA	Versio	n: 11.4
1.86293	Pe ≥rf Pw	ersisten vr:Usage	+ ce-Ml /Capl l	Bus-Id	Memory	Disp.A -Usage	+ Vo GP 	 latile U-Util	Uncorr. ECC Compute M. MIG M.
-1.51474-	4100-SX P0 3	M 0	=====+ n 00W 	00000000 13934M	0:07:00 iB / 40).0 Off 0536MiB	+=== 	93%	0 Default Disabled
-3.20358- ⁽⁺ +++++++++++++++++++++++++++++++++++	\100-SX P0 2	M 0 289W / 44	n 00W 	00000000 13928M	0:46:00 iB / 40	0.0 Off 0536MiB		95%	0 Default Disabled
-4,89241 +++++5 * 5	\100-SX P0 3	M 0 19W / 44	n 00W 	00000000 13952M	0:85:00 iB / 40	0.0 Off 0536MiB		90%	0 Default Disabled
o No	\100-SX P0 3	M 04 43W / 44	n 00W 	00000000 13952M	0:C7:00 iB / 40	0.0 Off 0536MiB	 +	90%	0 Default Disabled
	: ;1 [D	PID	тур	e Proce	ess nam				GPU Memory Usage
	√A √A √A √A	12689 12690 12691 12692		C(C(C(C(ascent- ascent- ascent- ascent-	polaris polaris polaris polaris	s/bin s/bin s/bin s/bin	/nekrs /nekrs /nekrs /nekrs	13931MiB 13925MiB 13949MiB 13949MiB

Polaris - 40 ranks

Yu-Hsiang Lan, Misun Min, Paul Fisher

Yu-Hsiang Lan, Misun Min, Paul Fisher

Visualization Hands-On Session

1:25 – 3:30pm, Room 1407

Here are some options...

— ParaView on Polaris

- Run ParaView on Polaris with client on your laptop
- Vislt on Polaris
 - Run Vislt on Polaris with client on your laptop
- Advanced ParaView Scripting
 - Batch scripts for generating animations
 - Animating camera paths
- Let's Visualize Your Data
- Getting Started with *In Situ*

Visualization Help

support@alcf.anl.gov

Publication Images & Covers

Animations

- SC Visualization Showcase [Best Vis Finalist 2014-2020, 2022]
- APS Division of Fluid Dynamics Gallery of Fluid Motion
- SC Gordon Bell Submissions
- Press Releases

In Situ Vis and Analysis

Additional information

ALPINE: https://alpine.dsscale.org/ Ascent: https://github.com/Alpine-DAV/ascent SENSEI: https://sensei-insitu.org/ SmartSim: https://developer.hpe.com/platform/smartsim/home/ ParaView/Catalyst: https://www.paraview.org/in-situ/ Libsim: https://www.visitusers.org/index.php?title=VisIt-tutorial-in-situ VTK-m: https://m.vtk.org/ Cinema: https://cinemascience.github.io/ OSPRay: https://github.com/ospray/ospray

QUESTIONS?

Joe Insley insley@anl.gov Silvio Rizzi srizzi@anl.gov Janet Knowles jknowles@anl.gov

Victor Mateevitsi vmateevitsi@anl.gov

www.anl.gov