
Bob Chesebrough
AI Software Solutions Engineer

Workshop

Accelerate Python Loops with the Intel ®
AI Analytics Toolkit

Workshop #2 in series
Module 2: Broadcasting, NumPy Where, NumPy Select

2Copyright © 2022, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Optimization Notice

Learning Objectives

• At the end of the workshop you will be able to:

• Describe a Python loop replacement strategy using NumPy constructs which improves
readability, maintainability, performs fasts on current hardware and readies code for future
HW & SW accelerations that Intel builds into silicon and which are exposed via NumPy

• Describe NumPy clause to aid sorting, aggregations, reductions, broadcasting, and “where”
and “select” to significantly accelerate your Python code

• Describe the value of the Intel oneAPI AI Analytics Toolkit

• Describe underlying reasons for the acceleration due to NumPy powered by oneAPI

3Copyright © 2022, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice 3

Intel® oneAPI
AI Analytics Toolkit
Accelerate end-to-end AI and data analytics pipelines
with libraries optimized for Intel® architectures

Who Uses It?
Data scientists, AI researchers, ML and DL developers,
AI application developers

Top Features/Benefits
§ Deep learning performance for training and inference with

Intel optimized DL frameworks and tools

§ Drop-in acceleration for data analytics and machine learning
workflows with compute-intensive Python packages

Learn More: software.intel.com/oneapi/ai-kit

Deep Learning

Intel® Optimization for TensorFlow

Intel® Optimization for PyTorch

Intel® Neural Compressor

Model Zoo for Intel® Architecture

Machine Learning

Intel® Extension for Scikit-learn Intel-optimized XGBoost

Get the Toolkit HERE or via these locations

Intel® DevCloudIntel Installer Docker Apt, Yum Conda

CPU GPU

Hardware support varies by individual tool. Architecture support will be expanded over time.

Back to Domain-specific Toolkits for Specialized Workloads

Intel® AI Analytics Toolkit

Intel-optimized Python

Numba PythonNumPy SciPy Pandas

Data Analytics

Intel® Distribution of Modin OmniSci Backend

https://software.intel.com/en-us/oneapi/ai-kit
https://software.intel.com/content/www/us/en/develop/tools/oneapi/download.html
https://intelsoftwaresites.secure.force.com/devcloud/oneapi
https://software.intel.com/content/www/us/en/develop/articles/installation-guide-for-intel-oneapi-toolkits.html
https://hub.docker.com/r/intel/oneapi-aikit
https://software.intel.com/content/www/us/en/develop/articles/oneapi-repo-instructions.html
https://software.intel.com/content/www/us/en/develop/articles/installing-ai-kit-with-conda.html

4Copyright © 2022, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Deep Learning

Intel® Optimization for TensorFlow

Intel® Optimization for PyTorch

Intel® Neural Compressor

Model Zoo for Intel® Architecture

Machine Learning

Intel® Extension for Scikit-learn Intel-optimized XGBoost

CPU GPU

Hardware support varies by individual tool. Architecture support will be expanded over time.

Intel® AI Analytics Toolkit

Intel-optimized Python

Numba PythonNumPy SciPy Pandas

Data Analytics

Intel® Distribution of Modin OmniSci Backend

Register Using QR Code
Click Jupyter Icon link to sign in

https://devcloud.intel.com/oneapi/get_started/

Intel DevCloud

Register And Login Here

• Follow the ReadMe:
• github.com/IntelSoftware/Machine-Learning-using-oneAPI/blob/main/README.md

6Copyright © 2022, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Optimization Notice

Numpy – powered by oneAPI

• Stock version has oneAPI included
• Download oneAPI analytics toolkit here (get latest functionality

here first)
• Are you getting the performance you expect using NumPy?
• Are you using NumPy effectively?
• Note: Keep NumPy library up to date
• Are you using NumPy effectively?

https://www.intel.com/content/www/us/en/developer/tools/oneapi/ai-analytics-toolkit.html

7Copyright © 2022, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Optimization Notice

Python is Great & Fast …

• For rapidly proto typing ideas
• Tackling just about every imaginable coding task
• Getting project rolling quickly … Examples of code are everywhere
• Easy: Dynamically typed – making programming easy
• Easy & Fast: : Leverage huge number of libraries, easily installable
• For AI: fast/no porting: easy portability of models across

architectures

8Copyright © 2022, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Optimization Notice

Python is SLOW

• For some things:
• REPEATED low level tasks

• Large loops

• Nested Loops

• List comprehensions (if large)

• BUT

• There are ways to mitigate its weaknesses

• Take advantage of those libraries

• NUMPY – this is powered by oneAPI !

• And others!

9Copyright © 2022, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Optimization Notice

Numpy Vectorization:

•This practice of replacing explicit loops with array expressions
is commonly referred to as vectorization. In general,
vectorized array operations will often be one or two (or more)
orders of magnitude faster than their pure Python
equivalents, with the biggest impact [seen] in any kind of
numerical computations. - Wes McKinney

10Copyright © 2022, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Optimization Notice

Vectorization is NOT just theory!

You will see, hear about the speedups possible, then you will experience it in code

This is why we strongly encourage the use of libraries powered by Intel oneAPI such as
Numpy, Scipy, and the rest

Get the goodness of Python but inherit vectorization speed inherent with Numpy
powered by Intel oneAPI

100 X speed up using Numpy broadcasting versus
loop

11Copyright © 2022, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Optimization Notice

• Numpy takes advantage of vectorization: powered by Intel oneAPI

• Specifically, oneMKL, for vectorization

• Vector width allows multiple operations in single HW instruction.

• Many FP instructions
computed in single instruction

Why are these speedup so dramatic?

AVX2: 256 bits: 8 floats wide

AVX512: 512 bits: 16 floats wide

12Copyright © 2022, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Optimization Notice

SIMD in a Nutshell

Loopy: (done one at a time)
for i in range(1,8):
 c[i] = a[i] + b[i]

SIMD: (all 8 locations done at
once via SIMD instructions)
 c = a + b

3 -2 1 5 12 11 1 2

4 2 2 4 -13 9 2 3

7 0 3 9 -1 20 3 5

a

b

c

+

=

13Copyright © 2022, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Optimization Notice

We are comparing to simple loops in Python

Python is dynamically typed
• Has to check the data type before any operation

to ensure correct operations are applied

Even a simple integer is not simple
• A class or structure that contains
• reference counters and other values

• These are updated every operation

Loop Iterations

In python, these operations
are COSTLY

3 2 5+ =

5 3 8+ =

7 4 11+ =

9 5 14+ =

1 1 2+ =
Scalar Instructions

14Copyright © 2022, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Optimization Notice

Effect of Non Contiguous Memory Access

A list of integers in python are NOT generally in contiguous locations

For this list: [1, 2, 3, 4, 5, 6, 7, 8]

Accessing many of these in loops is VERY Costly (could be hundreds of clock cycles)

5 7

3

8

2

1

6 4

15Copyright © 2022, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Optimization Notice

Cache is used ineffectively
Random reads from all over memory hurt performance

Modern Intel CPU’s read in Cache line of consecutive memory so that consecutive data is already to go
when needed. The cache line may contain 16 consecutive elements or more
But with random reads, our next data element is read from a completely different place in memory –
wasting the remaining elements that were ready to be served from the cache line
This is analogous to a chef opening and cooking a single egg from a carton of 16 to service customer
number 1
Then then opening a NEW carton of eggs from a SECOND carton for customer number 2. The other eggs
get tossed out [analogous to cache line eviction]
These are SOME reasons why vectorization is better – it mitigates all the above

16Copyright © 2022, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Optimization Notice

Cache is used ineffectively with random memory accesses

Cache Eviction: Similar to not enough
room on the table

Table full of egg
cartons

17Copyright © 2022, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Optimization Notice

Additionally: concerning memory

An array of integers in Numpy are contiguous
locations

Modern CPU’s return a cache line (like a carton of
eggs) for the contiguous memory elements nearby
one you chose to load initially.

The assumption is: if I just used memory address
0x12345, then likely I will use 0x12346 very soon

1 2 3 4 5 6 7 8

Contiguous memory
addresses

18Copyright © 2022, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Optimization Notice

How do I move my code patterns
to NumPy?

• NumPy Vectorization encompasses…
• NumPy Universal Functions (Ufuncs)
• Aggregations
• Fancy Indexing
• Broadcasting
• NumPy Where & Select for Conditionals
• Are ALL loops vectorizable?
• We will give guidance

19Copyright © 2022, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Optimization Notice

How to create Numpy arrays

• From existing lists:
• By dimensions but empty:

• By Shape – fill with zeros or ones:

20Copyright © 2022, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Optimization Notice

ufuncs

ufuncs are written in C (for speed) and linked into Python with NumPy’s
ufunc facility
Universal Functions Description: These are vectorized

Math operations add, subtract, multiply, divide, reciprocal, matmul, log, exp, square, sqrt, …

Trigonometric sin, cos, tan, arcsin, arccos, arctan, hypot, sinh, cosh, tanh, degrees,
radians

Bit-twiddling bitwise_and, bitwise_or, bitwise_xor, invert, left_shift, right_shift

Comparison Functions greater, greater_equal, less, less_equal, not_equal, equal, logical_and,
logical_or, logical_xor, logical_not

Floating Functions isfinite, isinf, isnan, isnat, fabs, signbit, copysign, nextafter, spacing,
modf, ldexp, frexp, fmod, floor, ceil, trunc

21Copyright © 2022, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Optimization Notice

NumPy Universal functions (ufunc):
Vectorized!

• ufunc is a “vectorized” wrapper for a function

• Implements vectorization support in Intel AVX2 and AVX512

• Takes a fixed number of specific inputs

• Produces a fixed number of specific outputs

• Applies function in per element-wise fashion.

• For detailed information on universal functions, see Universal functions (ufunc) basics.

import numpy as np

arr = np.trunc([-3.1666, 3.6667])

print(arr)
out:
[-3. 3.]

https://numpy.org/doc/stable/glossary.html
https://numpy.org/doc/stable/user/basics.ufuncs.html

22Copyright © 2022, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Optimization Notice

Sophisticated Indexing

• Slicing and Indexing can replace many common loop concepts

Results 4.5
X

23Copyright © 2022, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Optimization Notice

NumPy Aggregation & Statistics Functions
Functions Description: These are vectorized

np.mean() Compute the arithmetic mean along the specified axis.
np.std() Compute the standard deviation along the specified axis.
np.var() Compute the variance along the specified axis.
np.sum() Sum of array elements over a given axis.
np.prod() Return the product of array elements over a given axis.
np.cumsum() Return the cumulative sum of the elements along a given axis.
np.cumprod() Return the cumulative product of elements along a given axis.
np.min(), np.max() Return the minimum / maximum of an array or minimum along an axis.
np.argmin(),
np.argmax()

Returns the indices of the minimum / maximum values along an axis

np.all() Test whether all array elements along a given axis evaluate to True.
np.any() Test whether any array element along a given axis evaluates to True.

24Copyright © 2022, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Optimization Notice

A = [1 2 3]
for v in range(len(A)):
 S += v
mean = S/len(A)

• Aggregation is an operation to reduce the dimensionality of an array or
vector

• Implements vectorization support in Intel AVX2 and AVX512

• Replace loops you are using to compute averages, sums, standard
deviation, min, max etc

• Use numpy aggregation instead. Its more readable, faster, and future
proof

A = np.array(A)
mean = A.mean()

NumPy Aggregations: Vectorized!

1 2 3 np.mean = 2

25Copyright © 2022, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Optimization Notice

NumPy Aggregations: Vectorized!

A
[[1 2 3]
[4 5 6]]

A.sum(axis = 0) array([5 7 9])

A.sum(axis = 1) array([6 15])

Aggregations can be applied along different axes

26Copyright © 2022, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Optimization Notice

Aggregation: Example

100X speed up over naïve loop

27Copyright © 2022, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Optimization Notice

NumPy: Aggregation & Statistics

Result: 100 Million elements: roughly 13X

28Copyright © 2022, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Optimization Notice

NumPy: Sorting: Quicksort

Result: 1 Million elements: roughly 87X Link to Intel NumPy article

https://www.phoronix.com/news/Intel-AVX-512-Quicksort-Numpy

29Copyright © 2022, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Optimization Notice

NumPy Broadcasting: Vectorized!

• Support with AVX2 and AVX512 instructions

• Apply an operator with a scalar to each element in vector

• Also, apply operator with lower dimension vector to larger dimension

a = np.array([1.0 2.0 3.0])

b = 2.0

a * b

array([2. 4. 6.])

30Copyright © 2022, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Optimization Notice

Broadcasting Graphically

Non-matching dimensions are extended and data copied at HW level

Once dimensions match the vectors can be added, subtracted etc

First example:
• a.shape (1, 3)

• b.shape (1,1) # extend/copy to (1, 3)

• result.shape (1, 3)

31Copyright © 2022, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Optimization Notice

Broadcasting Graphically

Non-matching dimensions are extended and data copied at HW level

Once dimensions match the vectors can be added, subtracted etc

Second example:
• a.shape (4, 3)

• b.shape (1, 3) # extend/copy to (4, 3)

• result.shape (4, 3)

32Copyright © 2022, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Optimization Notice

Broadcasting Graphically

Non-matching dimensions are extended and data copied at HW level
Once dimensions match the vectors can be added, subtracted etc

Third example:
• a.shape (4, 1)

• b.shape (1, 3) # extend/copy to (4, 3)
• result.shape (4, 3)
•

33Copyright © 2022, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Optimization Notice

Broadcasting Example

Simple Multiplication table

34Copyright © 2022, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Optimization Notice

Numpy.where

numpy.where: see : Return elements chosen from x or y
depending on condition.

https://numpy.org/doc/stable/reference/generated/numpy.where.html

35Copyright © 2022, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Optimization Notice

NumPy Where, NumPy Select

• If statements (conditional logic) might severely limit performance:

• Numpy: handles conditionals quickly, efficiently

Results: ~ 20 X

36Copyright © 2022, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Optimization Notice

Numpy Where
Find row, col indices fast

37Copyright © 2022, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Optimization Notice

Numpy.where: More Complex logic

Results:
~ 20 X

38Copyright © 2022, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Optimization Notice

Numpy Select

Numpy.select: see

• Return an array drawn from elements in choice list, depending on conditions.

• Great for pulling together elements or functions(elements) from different arrays,
DataFrames, different parts of the same array, etc

https://numpy.org/doc/stable/reference/generated/numpy.select.html

39Copyright © 2022, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Optimization Notice

Numpy: Select Example

Results: ~ 20 X

40Copyright © 2022, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Optimization Notice

The Pandas Connection

• Pandas is built on top of Numpy
• All the methods describe before apply

• We will demonstrate alternative ways to achieve speedups
when Pandas Apply is slow due to conditional logic in the
custom called function

41Copyright © 2022, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Optimization Notice

Methods

• Use “Apply” for simple functions to apply to columns
• When things get slow, convert data to Numpy arrays
• to_numpy()
• Replace conditional logic in the Apply with Numpy.Where or

Numpy.Select
• It is even possible to use Numpy. Select to manipulate Pnadas

dataframes directly

42Copyright © 2022, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Optimization Notice

Using Numpy.Select as alternative to Pandas.Apply

43Copyright © 2022, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Optimization Notice

Using Numpy.Select as alternative to Pandas.Apply

Results:
200 X +

44Copyright © 2022, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Optimization Notice

Poll Audience
Live Demo/Lab

https://github.com/IntelSoftware/Machine-Learning-using-
oneAPI.git

Dive into Chapter 08

https://github.com/IntelSoftware/Machine-Learning-using-oneAPI.git
https://github.com/IntelSoftware/Machine-Learning-using-oneAPI.git

45Copyright © 2022, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Optimization Notice

Call to Action

• Loops:
• Find large single, double, and triple nested loops in your code

and replace with Scipy/ Scikit-Learn*, or Numpy alternative
• Find time consuming list comprehensions and replace with a

Numpy alternative .
• If statements:
• replace with Numpy.where or Numpy.select options if possible
• Using array masking that follows the conditional logic

46Machine Learning using oneAPI

Thanks for attending the session

47Copyright © 2022, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Optimization Notice

BACKUP

48Copyright © 2022, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2,
SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by
Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for
Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.
Notice revision #20110804

Notices & Disclaimers
§ This document contains information on products, services and/or processes in development. All information provided here is subject to change without notice. Contact your Intel

representative to obtain the latest forecast, schedule, specifications and roadmaps.

§ The products and services described may contain defects or errors known as errata which may cause deviations from published specifications. Current characterized errata are available on
request. No product or component can be absolutely secure. Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or
service activation. Learn more at intel.com, or from the OEM or retailer.

§ Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are
measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other
information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more
complete information visit www.intel.com/benchmarks.

§ INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS
DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR
WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

§ Copyright ©, Intel Corporation. All rights reserved. Intel, the Intel logo, Xeon, Core, VTune, and OpenVINO are trademarks of Intel Corporation or its subsidiaries in the U.S. and other
countries.

48

https://software.intel.com/en-us/articles/optimization-notice
http://www.intel.com/benchmarks

49

