Data Parallel Essentials for Python:
3ringing oneAP| to python —Part 2

Praveen Kundurthy

What is Data parallel Python?

intel.

Numba-Dpex

* Agenda
 Qverview of oneAPI

* Overview of Intel® oneAPI Al Analytics Toolkit

» Introduction to Numba-Data parallel extension (numba-dpex) and data parallel control

(dpctl)
« Pairwise distance using @njit and @Kernel decorator
* Intel® Extension for Scikit-learn
» Pairwise distance using scikit learn
» Compute follows data approach
« Black Scholes using @njit and @Kernel decorator

* Profiling using Intel® VTune™ Profiler and Intel® Advisor

 Hands On Intel® DevCloud / JLSE

* Pairwise Distance and Blackscholes

Optimization Notice
Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

intel.

2

Programming Challenges

for Multiple Architectures

Growth in specialized workloads
Variety of data-centric hardware required

Separate programming models and toolchains for each
architecture are required today

Software development complexity limits freedom of
architectural choice

Optimization Notice
Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Application Workloads Need Diverse Hardware

| - &

Scalar Vector Spatial Matrix

Middleware & Frameworks

CPU GPU FPGA Other accel.
programming programming programming programming
model model model models

Other accel.

intel

Introducing

oneAP|

Application Workloads Need Diverse Hardware

| I

Scalar Vector Spatial Matrix

Cross-architecture programming that delivers freedom

to choose the best hardware
Middleware & Frameworks

Based on industry standards and open specifications

Exposes cutting-edge performance features of latest

hardware Industry Intel
Initiative Product

Compatible with existing high-performance languages
and programming models including C++, OpenMP,
Fortran, and MPI

Other accel.

Optimization Notice .
Copyright © 2019, Intel Corporation. All rights reserved. lntel
*Other names and brands may be claimed as the property of others. .

Intel” one AP
Al Analytics Toolkit

Accelerate end-to-end Al and data analytics
pipelines with libraries optimized for Intel®
architectures

Who Uses [t?

Data scientists, Al researchers, ML and DL developers,
Al application developers

Top Features/Benefits

* Deep learning performance for training and inference
with Intel optimized DL frameworks and tools

= Drop-in acceleration for data analytics and machine
learning workflows with compute-intensive Python
packages

intal

Al
AMNALYTICS
TOOLKIT

oncAPT

Learn More: software.intel.comn/oneapifai-kit

Intel® one API Al Analytics Toolkit

Machine Leamning

Intel® Optimization for TensorFlow Intel® Extension for Scikit-learn Intel-optimized XGBoost

Intel® Neural Compressor Data AndYtICE

Model Zoo for Intel® Architecture Intel® Distribution of Modin OmniSci Backend

intel-optimized Python

ALaLl L1008

=1 E crPU

Hardware support varies by individual tool. Architecture support will be expanded over time.

TTTTY

E GPU

o

Get the Toolkit HERE or via these locations

Back to Domain-specific Toolkits for Specialized Waorkloads intel

11

Al Software Stack for Intel XPUs

Intel offers a Robust Software Stack to Maximize Performance of Diverse Workloads

Intel® Low
Precision
Optimization

Model Zoo for
Intel®
Architecture

E2E Workloads
(Census, NYTaxi,
Mortgage...)

pandas

TensorFlow

PyTorch

xgboost

Modin scipy daal4Py

numba- oneDAL oneTBB oneCCL oneDNN

dppy

oneMKL

Optimization Notice
Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Open Model

©penVIN®

Model Optimizer
&
Inference Engine

oneVPL

DL/ML Tools

Middleware &
Frameworks

Libraries &

Compiler
Part of the

Intel® oneAPI Base Toolkit

Intel” VTune” Profiler
SYCL Profiling-Tune for CPU, GPU & FPGA

Analyze SYCL

See the lines of SYCL that consume the most time

Tune for Intel CPUs, GPUs & FPGAs

Optimize for any supported hardware accelerator

Optimize Offload

Tune OpenMP offload performance

Wide Range of Performance Profiles
CPU, GPU, FPGA, threading, memory, cache, storage...

Supports Popular Languages
SYCL, C, C++, Fortran, Python, Go, Java, or a mix

There will still be a need to tune for each architecture.

Optimization Notice
Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

I ey | o= #F 0 b ok Jo]

- A

GPU Instructions Executed by Instruction T/

Source 8 Confrol Flow # Send & Wait
0 Int32 & SP Float @ Int64 & DP Float @ Other

158 | dx = pee(yl.pes(0] - perlal.pos[0]) 75,002,500 I SN I
159 dy = ptr[jl.posll] - ptriil.pos[l] 12,500,000 B
160 | dz = ptr[jl.pos(2] - ptrliil.pe=(2]] 12,500,000 M
161 - - N . o '
1_65 distanceSqr = dx¥dx + dy%dy + dz*d _87_500_0_(]0 [|)
1_6:?» distancelnv = 1.0 / sqzﬁaistances 12500_0_0'_5. -
164 '
e T B R

ptriil.ace(l] +=dy * 6 * pex(3].mq 150,000,000 S
167 | ptrlil.accl2] +=dz * 6 * ptr[jl.md 150,000,000 DD D
GPU System

GPU Execution
Units Arra

y

163.66 GB/s Total *

CPU

Utilization: 24.5%

intel.

7

Intel” Advisor

Design Assistant - Design for Modern Hardware

(CPU) Host (CPU) Host

Offload Advisor

Estimate performance of offloading to an accelerator 1 " ‘ 7| T

Roofline Analysis =

Optimize CPU/GPU code for memory and compute

Vectorization Advisor k@O« + x B « |Cores:[1 v| ® [¥ Default FLOAT | [{I* NoResults to Compare ~ | =

Add and optimize vectorization .U ‘% Hc—-la._j Peak 47 sal -JBJ
b 5 Loy’ 5

DP Vestor'Add Feak-26-97 GFLDPS

Threading Advisor

Add effective threading to unthreaded applications

Flow Graph Analyzer

Create and analyze efficient flow graphs

v

I

032 g FLOP/Byte (Anthmesc Intensity)
T

i
0.033 054
Physical Cores: 4 & App Threads: 1 « Self Elapsed Time: 17.079 s Total Time: 17.079s

Optimization Notice .
Copyright © 2019, Intel Corporation. All rights reserved. There will still be a need to tune for each architecture. |nte|_
*Other names and brands may be claimed as the property of others. N

Find Effective Optimization Strategies

Intel® Advisor - GPU Roofline

GPU Roofline Performance Insights

= Highlights poor performing loops
= Shows performance ‘headroom’ for
each loop
— Which can be improved
— Which are worth improving
= Shows likely causes of bottlenecks

— Memory bound vs. compute bound

= Suggests next optimization steps

Optimization Notice

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

400 -

100

70 -

40

¥ L3: GTI (Memory) = || 2 Guidance v

SdOT4D

Self Elapsed Time: 0.268 s

- ~ B ?
R SF_Eyecﬁr Add Peak, 239784 GFLOPS
- L -
- - ?
/E_/_’_'_ __________ == DP VeclorFiA Peak: 108.62 GFLOPS
=T - — il - - ?
q e [.. DP Veclor Add Peak 55.13 GFLOPS
47.44 GFLOPS g‘?’;\x’ W b i
% Cf{ - 7 .
QRLEise” i G
I S .
g‘a“"é/\- 20 R s
b g ~
2 g s
T+ A0 . praa
o R ; = &
B+SLM ﬂ SLM cel L3 |]
87 GB [] 25.701 GB |, &% ~"| 9.169 fo— 0471 GB
1= oo Matrix2<float> =
AT Self Performance: B.02 GFLOPS
QP\\F\’??/ Self L3 Arithmetic Intensity: 0.23 FLOP/Byte
O Self Elapsed Time- 0.268 s
Self Memory Traffic: 9.169 GB FLOP/Byte (Arithmetic Intensity)
T T T T T T T T
0.07 01 0.4 0.7 1 4 7 10

intel.

Learn More at the Intel® DevCloud for oneAPI
Free Access, A Fast Way to Start Coding

A development sandbox to develop, test and Learn Data Parallel C++
run workloads across a range of Intel® CPUs, 4
GPUs, and FPGAs using Intel's oneAPI Use Intel® oneAPI Toolkits
software

Evaluate Workloads

For customers focused on data-centric
workloads on a variety of Intel® architecture Prototype Your Project

Build Cross-architecture Applications

No Downloads | No Hardware Acquisition | No Installation | No Set-up & Configuration

Get Up & Runningin Seconds!
https://devcloud.intel.com/oneapi/get_started/

ight © 2020, Intel Corporation. All rights reserved.
names and brands may be claimed as the property of others.

intel.

Data Parallel Essentials for Python

Fostering a oneAPI/SYCL-
based ecosystem for PyDATA

PyData Ecosystem

Data Parallel
Essentials for Python

oneAPI + SYCL

XPU-Optimized Libraries

. &;}m XGBoost

AP|-BASED PROGRAMMING

NumPy

Compiler for XPUs

2

Numba
DIRECT PROGRAMMING

Numba-
dpex

Other accel.

11

dpctl — Data

parallel control

dpctl Python library Extension Interfaces
° dpctl. tensor { °
: ~
I ’ Cython interface
I =y
o dpctl dpctl.memory dpctl.program (
%
|
I pybind11 interface
___ [
| A
Minimal C wrapper for DPC++ SYCL RT | S
o libsyclinterface I
o Library providing a minimal C API for the main DPC++ 5YCL runtime classes ° Python modules exposing SYCL runtime classes, USM allocators, and kernel bundle

° A data APl standard complaint array library supporting USM allocated memory ° Native APl to use dpctl objects in Cython and pybind11l extensions modules

12

Current Ecosystem

Scikit-learnex .
Wider ecosystem

Scikit-learn extension for XPU

Numba-dpex User-level libraries

Drop in NumPy replacement JIT Compiler for NumPy, Kernel
programming

Python Data API Data Parallel

. — .
o I=
Python

library based on USM

i subset of SYCL

13

Compute Follows data

Offload Model
- Pythonic offload model following array API spec (https://data-apis.org/array-api/latest/)
- Offload happens where data currently resides (“compute follows data”)

X =dp.array([1,2,3], device=“gpu:0”)

X =dp.array([1,2,3]) X =dp.array([1,2,3], device=“gpu:0”) Y = dp.array([1.2,3], device="gpu:1”)

Z=X+Y

Y=X*4 Y=X*4

executed on default device executed on “gpu:0” device Error! Arrays are on different devices

14

Programming Model

Compute Follows Data

- Pythonic offload model following array

API spec

- Explicit control over execution based on

data placement

import dpnp as dp
Case 1
¥ Allocate X on the default device
X = dp.array([1,2,3])
scaling of X executed on device of X, result
placed into ¥

Y = X = 4

Case 2

Allocate X on "gpu:1"

X = dp.array([1,2,3], device="gpu:1")
Executed on "gpu:1"

Y = X = 4

Case 3

X1 = dp.array([1,2,3], device="gpu:1")
X2 = dp.array([1,2,3], device="gpu:8")
error!

¥ = X1 + X2

Arrays can be associated with another device
(copy is performed if needed)
X1a = X1.to_divice(device=dev)

15

Numba-dpex

Array-style programming

@njit (parallel=True)
def 12 distance(a, b, c)
return np.sum((a-b)**2)

NumPy (array) style programming. Requires

minimum code changes to compile existing
Numpy code for XPU.

OpenCl-style kernel programming

oneAPI

Explicit prange (parfor) loops

@njit (parallel=True)
def 12 distance(a, b, c)

s = 0.0

for i in prange (len(a))
s += (a[i]l-b[i])**2

return s

o Parfor-style programming. Preferred by some
users when iteration space requires complex
indexing.
Unique for CPU. Intel extends to XPU via
numba-dpex. No CUDA alternatives to date

@kernel (access type={“read only”:
def 12 distance(a, b, c)
i numba dpex.get global id(0)
j = numba dpex.get global id (1)
sub = a[i,j] - b[i,]]
sq = sub ** 2
atomic.add(c,

0, sq)

~a”,

“b”], write only:[“c”]})

Most advanced programming model.

Recommended to get highest performance on

XPU yet avoiding DPC++.
Nvidia @cuda.jit offers this programming
model in Numba

Automatic offload using @niit Decorator

Import njit and prange from import dpctl
b import numpy as np
numioa import numba

@numba.njit(parallel=True)
Use @nijit decorator to directly det I2_distance_kernel(a, b):

sub =a - b

detect data parallel kernels using sq = np.square(sub)

numMpy expressions sum_=_np~sum(sq)
d = np.sqgrt(sum)

Automatic offload mode for return d
NumPy data-parallel expressions main():
1
np.random.random((R,C))
Use dpctl.device context to np.random.random((R,C))

. . device = dpctl.select_default_device

offload this to a device pr‘int("UsiEg device ...") O
device.print_device info()
with dpctl.device context(device):

result = 12 _distance_kernel(X, Y)
print("Result :", result)
print("Done...")
if _ _name__

main()

Optimization Notice

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Explicit parallel for loop - @niit Decorator

Import njit and prange from import numpy as np

from numba import njit, prange
numba .

import dpctl

Use @njit decorator to directly E‘;’gii’;dd i e, ©)e
detect data parallel kernels using a = np.empty like(b)

numpy expressions for i in-prange(len(b)):
: o a[i] = b[i] + c[i]
Use prange to specify explicitly a return a

loop to be parallelized

main():
10
. . N
Use dpctl.device context to ﬂggﬂgzg,\,g
offload this to a device device = dpctl.select default device()
with dpctl.device context(device):
result = add _two _arrays(b, c)

if _ name_ "
main()

Optimization Notice
Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

@dppy.kernel Decorator

import dpctl
Import detl import numba_dppy as dppy

import numpy as np

@dppy . kernel
iti I TaYe def data_parallel_sum(a, b, c):
Vector addition in parallel using Ry o

the @ddpy.kernel decorator c[i] = a[i] b[i]

_ : def driver(a, b, c, global_size):
Common Way Of Kernel INVE " data_[))ar'allel_sum[global_size, dppy .DEFAULT_LOCAL_SIZE
a, b, c
print("C ", c)

def main():
global _size = 10
N = global_size
print("N", N)
. . a = np.array(np.random.random(N), dtype=np.float32)
Offload this to a device b = np.array(np.random.random(N), dtype=np.float32)
c = np.ones_like(a)
with dpctl.device context("opencl:gpu"):
driver(a, b, c, global_size)

if name_ == " main_":

main()

Optimization Notice
Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

What Categories of Al are covered?

Machine Learning using oneAPI |nte|. A

Types of Machine Learning

data points have known outcome

data points have unknown outcome

Optimization Notice
Copyright © 2022, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Types of Supervised Learning

Regression outcome is continuous (numerical)

outcome is a category

Optimization Notice
Copyright © 2022, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Types of Unsupervised Learning

Clus’rering identify unknown structure in data

use structural characteristics to simplify data

Optimization Notice

pr ght@ 2022Ith orporation. All rights r ved.
Other and brands may be ¢ llmed s the p p rty of others.

Classification & Regression

. Have features in a dataset “X”

* Have targets in a column “y
 Goal: learn to predict "y”
« Classification: discrete targets (“cats”, “dogs”, “hair”)

. Regression: continuous targets (12.37,-15.2, 98.6)

intel. =

Supervised Learning Overview

-

-

data with

answers

+ model

-

data without

answers

' model >

\
fit
> -
J
\
predict predicted
answers

Regression: Numeric Answers

-

movie data
with

revenue

+ model

(

movie data
(unknown

revenue)

' model

h fit
© model
J
\
predict predicted
revenue

Classification: Categorical Answers

r ~
labeled fit
=
data + model -
_ Y
r ~

predict

unlabeled data

- J

Classification: Categorical Answers

4)
. fit
emails labeled as
+ | >
spam/not spam mode -
\ J
4)
predict

unlabeled spam or not
1o+ model >
emails spam

What is Classification?

Which flower is a customer most
likely to purchase based on
similarity to previous purchase?

What is Needed for Classification?

* Model data with:
* Features that can be quantitated
* Labels that are known

* Method to measure similarity

K Nearest Neighbors Classification

60

G Survived

G Did not survive

40
Age

K Nearest Neighbors Classification
Neighbor Count (K = 3): G 2 G 1

60| o -
GGG e © GG -
® @
“l o Y@9@ %GGGGG
A X g ¢ -
Predict G\ G
TR Te® oo
@ ® 00 ©®

Number of Malignant Nodes

K Nearest Neighbors Classification
Neighbor Count (K = 4): G 3 G 1

60| o -
GGG e © GG -
@ @ @ .0 ©
e | @ G@Gg 29 ‘oo
Predict G\ G G
20‘2‘%%? oo
¥ ¢ 00 @

Number of Malignant Nodes

What is Needed to Select a KNN Model?

Correct value for 'K'

How to measure closeness of neighbors?

o ©
GGG - GGG -
® © .0 ¢
Ag;‘"e%“% o’ GGG
QO
39
T X

0 20
Nmb fMIg nt Nodes

© -
20 G@ o0

SSSSSSSS

Measurement of Distance in KNN

Euclidean Distance

@

Number of Malignant Nodes

Euclidean Distance (L2 Distance)

A Age

G,_,v

A Nodes
d = \/ANodes? + AAge?

Number of Malignant Nodes

Manhattan Distance (L1 or City Block Distance)

-

A

A Age

G,_,v

A Nodes
d = |ANodes| + |AAge|

Number of Malignant Nodes

Introduction to patching

» Intel® Extension for Scikit-learn* provides a way to accelerate existing scikit-learn code.

* In code, we will import sklearnex - this is the python library name for Intel Extensions for
Scikit-learn*

» Via patching: replacing the stock scikit-learn algorithms with their optimized versions
provided by the extension.

* You may enable patching in different ways:

Without editing the code: using a command line flag

Within code: using an import and a function call

. Un-patching: using methods to follow

Optimization Notice .
Copyright © 2022, Intel Corporation. All rights reserved. |nte| 39
*Other names and brands may be claimed as the property of others. *

Patching Alternatives

e Command line:

python -m sklearnex my_application.py

* Inside script or Jupyter Notebook:

from sklearnex import patch_sklearn

patch_sklearn()

Optimization Notice .
Copyright ©® 2022, Intel Corporation. All rights reserved. |nte| 40
*Other names and brands may be claimed as the property of others.

K Nearest Neighbor: The Syntax

Import sklearnex

Apply “monkey patch®

Import desired sklearn
algorithms AFTER the
patch

Optimization Notice
Copyright © 2022, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

from sklearnex import patch_sklearn
patch_sklearn() # apply BEFORE import of targets

from sklearn.linear_model import KNeighborsClassifier

Create an instance of the class

KNN = KNeighborsClassifier(n_neighbors=3, n_jobs=-1)
Fit the instance on the data and then predict the
expected value

KNN = KNN.fit(X_data, y_data)

y_predict = KNN.predict(X_data)

Pairwise Distance

Optimization Notice .
Copyright ©® 2022, Intel Corporation. All rights reserved. |nte| 42
*Other names and brands may be claimed as the property of others.

Pairwise Distance

Optimization Notice
Copyright © 2022, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Pairwise Distance

dp, = \/(px1 — P,)%t (pyl — IOyz)2

Optimization Notice
Copyright © 2022, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Pairwise Distance

d13 — \/(pxl _ px3)2+ (pyl _ py3)2

Optimization Notice
Copyright © 2022, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Pairwise Distance

dyy = \/(px1 — Py)t (¥ |0y4)2

Optimization Notice
Copyright © 2022, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Pairwise Distance

d15 — \/(pxl _ px5)2+ (pyl _ pyS)2

Optimization Notice
Copyright © 2022, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Pairwise Distance

dy3 = \/(pxz — Pt (Py2 — py3)2

Optimization Notice
Copyright © 2022, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Pairwise Distance

Optimization Notice
Copyright © 2022, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Euclidean Distance (L2 Distance)
NOT currently optimized by Intel Extensions for scikit-learn

-

A

A Age

G,_,v

A Nodes
d = \/ANodes? + AAge?

Number of Malignant Nodes

Cosine Distance
Optimized by Intel Extensions for scikit-learn

3

A xXB;

=3
-

AB
ixlel ™ [, g

(A, xB, +A xB +..)

Cosine Distance = 1 -

M=
g b

=
—

Cosine Distance = 1 -
length(A) x length(B)

y

Cosine Distance

Optimized by Intel Extensions for scikit-learn
(A, xB,+A xB +...)

Cosine Distance = 1 -
length(A) x length(B)

g‘: [[é”' 11”2] length(A) =sqrt(3x3+4x4)=5
A length(B) =sqrt(5x5+12x12)=13
B Cosine Distance = 1-cos 6

Cosine Distance = 1-(3x5+4x12)/ (5x13)
Cosine Distance = 1 - 0.969 =.031

Correlation Distance
Optimized by Intel Extensions for scikit-learn

Z(xi — xmean)(yi — ymean)

JEW — xmean)? Y O, Ynear)?

Correlation Distance = 1 -

X, = Ax

A X, = Bx
B y, = A4y

y, =By

Xmean = mean(Ax, Bx)
Ymean = mean(Ay: By)

Correlation Distance
Optimized by Intel Extensions for scikit-learn

Z(xi — xmean)(yi — ymean)

jZ(xi = xmean)? > ¥ Ypar)?

Correlation Distance = 1 -

A=[5,12]

B =13, 4]

A X1=5
X, =3

B y, =12
y,=4

Xmean = mean(5,3) = 4
= mean(12,4) = 8

ymean

Correlation Distance

Optimized by Intel Extensions for scikit-learn

A =15, 12]
B =13, 4]

Z(xi — xmean)(yi — ymean)

X;=5

ez jZ(xi —xmean)2 Y ¥y Yeur)?
y2=4

X ean = mean(5,3) = 4 (5-4)(12-8) + (3-4)(4-8)
Ymean = Mmean(12,4) = 8

V(G -492+ (B -49H)((12 - 8)2 + (4 — 8)2)

(4) + (4)

J(@+1)(16 + 16)

Correlation Distance

Optimized by Intel Extensions for scikit-learn
Z(xi — xmean)(yi — ymean)

A=[5,12] .t _
B=[3,4] . =3 .))

12 > (xd = xmeam)?) Oy Yrnear)

y>=+4

Xmean = mean(5,3) = 4

B V (64)
8
— = 1

Correlation Distance

Optimized by Intel Extensions for scikit-learn , _
Z(xl — xmean)(yi — ymean)

A =[5, 12] Correlation Distance = 1 - =

B=[3,4] JZ(xi - xmean)ZZ(yi _ Vmean)”

A Correlation Distance = 1 — 1

Correlation Distance = 0

Pairwise distance using @dppy.kernel

import dpctl
Import detl import numpy as np
import numba_dppy

@numba_dppy.kernel

Pairwise distance in parallel using def pairwise python(X1, X2, D):
the @ddpy.kernel decorator

i = numba_dppy.get_global_id(0)

N = X2.shape[0]

: . . . 0 = Xl.shape[1]

Kernel invocation of the Pairwise o o iy e

distance for k in range(0):
tmp = X1[1, k] - X2[j, k]
d += tmp * tmp

D[i, j] = np.sqrt(d)

def pw_distance(X1, X2, D):
. with dpctl.device context("opencl:gpu"):
Offload this to OpenCl:ng # pairwise_python|X1.shape[®@],numba_dppy.DEFAULT L
OCAL_SIZE](X1, X2, D)
pairwise python[X1.shape[0], 128](X1, X2, D)

Optimization Notice
Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Import sklearnex

Apply “monkey patch®

Import desired sklearn
algorithms AFTER the
patch

Optimization Notice
Copyright © 2022, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Distance : The Syntax

from sklearnex import patch_sklearn
patch_sklearn() # apply BEFORE import of targets
#patch_sklearn('distances’) # to be surgical

from sklearn.metrics.pairwise import pairwise_distances

#Create an instance of the class
dist = pairwise_distances (X, y, metric="correlation")
or

dist = pairwise_distances (X, y, metric="cosine"

Black Scholes using @njit

import dpctl

|mp0rt dpctl import numba as nb

from math import log, sqrt, exp, erf

blackscholes implemented as a parallel loop using numba.prange
@nb.njit(parallel=True, fastmath=True)
. . def-hTack_scholes_Kernel(nopt, price, strike, t, rate, vol, call, put):
Black Scholes in parallel using the mr = -rate
oo sig sig two = vol * vol * 2
@njit decorator for 1 in nb.prange(nopt):
price[i]
strike[i]
t[i]
log(P / S)
T* mr
T * sig sig two
0.25 * 2z
1.0 / sqrt(z)
(a-b+c)*y
(a-b- C) *y
9. * erf(wl)
0 * erf(w2)

Calculate Calls and puts with the
change in the current price and

the strike price

r - P + Se

Offload thIS tO level_Zel’O:ng def black_scholes(nopt, price, strike, t, rate, vol, call, put):

offload blackscholes computation to GPU (toggle level®@ or opencl driv
er).
with dpctl.device_context("level zero:gpu"):
black_scholes kernel(nopt, price, strike, t, rate, vol, call, put)

Optimization Notice
Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Hands-on Coding on Intel”
DevCloud / JLSE

DPC++ Essentials |nte|. 61

Summary

* lllustrate How oneAPI Can help solve the challenges of programming in a
heterogeneous world

 How to use Data Parallel Python and Data Parallel Control
* Performed 3 code walkthroughs via hands on activities demonstrating:
A Pairwise Algorithm using Jit and Kernel decorators on CPU and GPU
A Blackscholes Algorithm using Jit and Kernel decorators on CPU and GPU

Copyright © 2019, Intel Corporation. All rights reserved. intel
*Other names and brands may be claimed as the property of others. .

Thanks for attending the session

DPC++ Essentials |nte|. 63

NOTICES &

= This document contains information on products, services and/or processes in development. All information provided here is subject to change without notice. Contact your
Intel representative to obtain the latest forecast, schedule, specifications and roadmaps.

= The products and services described may contain defects or errors known as errata which may cause deviations from published specifications. Current characterized errata
are available on request. No product or component can be absolutely secure. Intel technologies’ features and benefits depend on system configuration and may require
enabled hardware, software or service activation. Learn more at intel.com, or from the OEM or retailer.

= Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and
MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to
vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product
when combined with other products. For more complete information visit www.intel.com/benchmarks.

= INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS". NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS
GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS
INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT,
COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

= Copyright ©, Intel Corporation. All rights reserved. Intel, the Intel logo, Xeon, Core, VTune, and OpenVINO are trademarks of Intel Corporation or its subsidiaries in the U.S. and
other countries.

Intel’'s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These
optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any
optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors.
Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for
more information regarding the specific instruction sets covered by this notice.

Notice revision #20110804

Optimization Notice .
Copyright © 2019, Intel Corporation. All rights reserved. lntel o4
*Other names and brands may be claimed as the property of others.

