
OPENMP WORKSHOP

QUICK OVERVIEW OF
OPENMP

erhtjhtyhy

April 26th 2019 – Chicago IL

JOSE MONSALVE

OVERVIEW

1.OpenMP Programming model
– Directives and clauses

2.OpenMP Memory Model
– Directives and clauses

3.Tasking Model

An introduction to OpenMP

2

THE OPENMP PROGRAMMING MODEL

FORK AND JOIN MODEL
Parallel regions

4

Execution starts with a single thread.

#pragma omp parallel spanws multiple threads

At the end of the parallel region execution
returns to a single thread (Barrier)

FORK AND JOIN MODEL
Definitions of threads

5

There is always a master threads

The number of threads can be controlled

OMP_NUM_THREADS environmental var

omp_set_num_threads() API call

num_threads() clause

User controls code and data distribution

REVIEW OF OPENMP DIRECTIVES

FORK AND JOIN MODEL
Parallel directive

7

• Same code is executed by all
the threads

• Each thread has its own
identifier

• There is private and shared
memory

• Unless nowait clause is used,
there is a barrier at the end of
the parallel region

fi
le
:
pa
ra
ll
el
.c

FORK AND JOIN MODEL
Master directive

8

• All the threads execute the
parallel region

• But only the master threads
execute line 6

• There is no barrier at the end
of the master region

fi
le
:
ma
st
er
.c

FORK AND JOIN MODEL
Single directive

9

• All the threads execute the
parallel region

• But only the a single threads
execute line 6

• It can be a thread different
than the master

• Unless nowait clause, there is
a barrier after the single region

fi
le
:
si
ng
le
.c

FORK AND JOIN MODEL
Critical directive

10

• All the threads access the
critical region at some point

• But only a single threads at a
time executes the thread
unsafe work at line 5

• Guarantees mutual exclusion

fi
le
:
cr
it
ic
al
.c

FORK AND JOIN MODEL
Barrier directive

11

• Global synchronization of threads
• All the threads executed all the

work before the barrier, and wait
for everyone to reach it.

• All “hi from” messages should be
printed before all “bye from”
messages

fi
le
:
ba
rr
ie
r.
c

Iteration space:

FORK AND JOIN MODEL
Parallel for/do loop directive

12

• Loop is executed in
parallel

• Each thread gets a chunk
of the iteration space

• How to distribute the
iterations?

i = 0
i = 1
i = 2
i = 3
i = 4
i = 5

fi
le
:
pa
ra
ll
el
_f
or
.c

Iteration space:

FORK AND JOIN MODEL
Parallel for/do loop directive

13

• Loop is executed in
parallel

• Each thread gets a chunk
of the iteration space

• How to distribute the
iterations?

• A: schedule() clause

i = 0
i = 1
i = 2
i = 3
i = 4
i = 5

fi
le
:
pa
ra
ll
el
_f
or
.c

OPENMP MEMORY MODEL AND CLAUSES

Global Shared Memory Space

Thread Local Memory Space

Thread Local Memory Space

Thread Local Memory Space

Thread Local Memory Space

THE OPENMP MEMORY MODEL
Global shared vs thread local memory

18
Seen by all threads

Seen only by itself
Private to each thread

Global Shared Memory Space

Thread Local Memory Space

Thread Local Memory Space

Thread Local Memory Space

Thread Local Memory Space

OPENMP MEMORY CLAUSES
Shared() clause

19

X = 5

file: parallel_share.c

Global Shared Memory Space

Thread Local Memory Space

Thread Local Memory Space

Thread Local Memory Space

Thread Local Memory Space

OPENMP MEMORY CLAUSES
Private() clause

20

X = 5
X = ??

X = ??

X = ??

X = ??

file: parallel_private.c

Global Shared Memory Space

Thread Local Memory Space

Thread Local Memory Space

Thread Local Memory Space

Thread Local Memory Space

OPENMP MEMORY CLAUSES
firstprivate() clause

21

X = 5
X = 5

X = 5

X = 5

X = 5

X = 5X = 5X = 5X = 5

file: parallel_firstprivate.c

Global Shared Memory Space

Thread Local Memory Space

Thread Local Memory Space

Thread Local Memory Space

Thread Local Memory Space

OPENMP MEMORY CLAUSES
reduction() clause

22

X = 5
X = 0

X = 1

X = 2

X = N-1X = N-1

X = N*(N-1)/2

+ X = N*(N-1)/2

X = 2

X = 1

X = 0

file: parallel_for_reduction.c

Global Shared Memory Space

Thread Local Memory Space

Thread Local Memory Space

Thread Local Memory Space

Thread Local Memory Space

OPENMP MEMORY CLAUSES
Atomic Directive

23

X = 4X = 3X = 2X = 1X = 0

file: parallel_atomic.c

TASKING

TASKING IN OPENMP

§ Before tasking we used worksharing constructs to assign work to
threads:
– For/do loops, sections, single …

§ Tasks allow us to create and queue “work” that threads execute
§ Additionally it allows controlling dependencies between different work

tasks
§ We use a parallel region to create the threads, and the tasking

constructs to create work and add it into the work queue

Yet another way of assigning work to threads…

25

TASKING MODEL
Task definition

26

int x = 10;
#pragma omp parallel
{

#pragma omp task
{

int y = x;
printf("Hi from %d\n", \

omp_get_thread_num();
}

}

Task Region (Code):

int y;
printf("Hi from %d\n", \
omp_get_thread_num());

Task data environment:
x y

TASK
• A task is an instance of executable

code and its data environment.
• A task is generated by:

• Task
• Taskloop
• Parallel (implicitly)
• Target (implicitly)
• Teams (implicitly)

• Tasking constructs provide units of
work to a thread for execution.

TASKING MODEL
Creation of tasks

27

Task queue Note: The number of workers is determined by
the number of threads in the parallel region

file: tasking.c

TASKING MODEL
Oversubscription of tasks

28

Task queue

TASK DEPENDENCIES
Give order to task execution

29

OP1()

OP2() OP3()

OP4()

x x

y z
OP1

OP2

OP3

OP4
Dependencies guarantees
order between tasks if the

variable belongs to the same
data environment

Predecessor task

Dependent task

file: tasking_depend.c

TASKING MODEL
Terminology

30

CREATE TASK

CHILDREN OF T1

DESCENDENT OF T1

T1

Sibling tasks

Child
 ta

sks

De
sc

en
de

nt
 ta

sk
s

*not dependency

file: tasking_terminology.c

TASKING MODEL

§ Task execution can be suspended and resumed later on.
§ This can only happen at certain points called scheduling points.

– Some examples:
• Generation of the task
• Taskyield directive
• Taskwait directive
• End of taskgroup directive
• Implicit and explicit barriers

Task Scheduling Points

31

Task queue

T

suspended

T

Resumed

TASKING MODEL
Tied and Untied tasks

32

Task queue

• Tied: Can be resumed only by the
same thread that suspended it

• Untied: Can be resumed by any
thread in the team

file: tasking_untied.c

TASKING MODEL

§ Deferring a task means that a task is generated but not executed right away
without suspending the execution of the generating (current) task
– A task is deferred by default

§ A non deferred task suspends the execution of the current task until the
generated task gets executed

Deferred and Undeferred tasks

33

Deferred Undeferred

file: tasking_undeferred.c

TASKING MODEL

§ Included task: A task for which execution is sequentially included in the
generating task region.
– Undeferred and executed immediately

§ Merged task: A task for which the data environment and Internal Control
Variables is the same as the generating task
– Must be undeferred and included

§ Final Task: A task that forces all of its child tasks to become final and
included. Recursively make all descendant tasks included as well
– It does not merge the tasks, unless allowed by each task (i.e. mergeable clause)

Included, merged, and final tasks

34

file: tasking_mergeable.c

TASKING MODEL
Final tasks

35

Equivalent to

Eith
er

way

TASK SYNCHRONIZATION
Taskwait

36

Taskwait

Taskwait yields the current task to
wait for the completion of only the

children task

file: tasking_taskwait.c

TASK SYNCHRONIZATION
Taskgroup

37

Taskgroup

Taskgroup yields the current task to
wait for the completion of all the
children task and descendants

file: tasking_taskgroup.c

TASK LOOPS
New in OpenMP 4.5

38

No taskloops

Parallelizing this loop with tasks

Taskloops

Allows distributing an iteration loop
into multiple tasks

file: tasking_taskloop.c

SUPPORT IN COMPILERS
Implementations are moving fast

39

Compiler name OMP Flag Offloading Flag Supported Architectures

GCC -fopenmp -foffload=<arch>=<options> KNL, NVIDIA, soon-AMD

LLVM -fopenmp -fopenmp-target=<arch>
-Xopenmp-target=<options>

NVIDIA

IBM XL -qsmp=omp -qoffload NVIDIA

CRAY CCE -homp Not needed NVIDIA

PGI -mp Not supported yet – In progress

Intel -qopenmp -qopenmp-offload=<arch> KNL(MIC)

AMD (aomp) -fopenmp -fopenmp-target=<arch>
-Xopenmp-target=<options>

NVIDIA, AMD

https://gcc.gnu.org/wiki/Offloading
https://clang.llvm.org/docs/OpenMPSupport.html
https://www.ibm.com/support/knowledgecenter/en/SSXVZZ_16.1.0/com.ibm.xlcpp161.lelinux.doc/compiler_ref/opt_offload.html
https://pubs.cray.com/content/S-2179/8.7/cray-c-and-c++-reference-manual/openmp-overview
https://www.pgroup.com/resources/docs/18.5/x86/pgi-user-guide/index.htm
https://software.intel.com/en-us/cpp-compiler-developer-guide-and-reference-qopenmp-offload-qopenmp-offload
https://github.com/ROCm-Developer-Tools/aomp

Contact information:
Jose Monsalve (josem@udel.edu)

Swaroop Pophale (pophaless@ornl.gov)

Kyle Friedline (utimatu@udel.edu)

Oscar Hernandez (oscar@ornl.gov)

Sunita Chandrasekaran (schandra@udel.edu)

THE OPENMP SOLLVE TEAM
VALIDATION AND VERIFICATION
Help us improve the OpenMP Implementations

40

Work supported by the U.S. Department of Energy, Office of Science, the Exascale Computing Project (17-SC-20-SC), a
collaborative effort of the U.S. Department of Energy Office of Science and the National Nuclear Security Administration under

contract number DE-AC05-00OR22725.

We also thank all of those who directly or indirectly have help this project.

Visit our website
https://crpl.cis.udel.edu/ompvvsollve/

mailto:josem@udel.edu
mailto:pophaless@ornl.gov
mailto:utimatu@udel.edu
mailto:oscar@ornl.gov
mailto:schandra@udel.edu

