
www.anl.gov

Python on HPC

Corey Adams, ACLF

Argonne Leadership Computing Facility1

Argonne Leadership Computing Facility2

Why this Talk?

Python is versatile and easy:

• Prototype many functionalities quickly

• Easy to glue together independent pieces of software with wrappers,
bindings, and utilities

• Very large open source package community

• Easy to maintain

• Datascience and Machine learning language of choice

Python is firmly entrenched as THE productivity language. So, how do you
use it correctly on HPC?

Python is a crucial productivity language

https://stackify.com/popular-
programming-languages-2018/

https://stackify.com/popular-programming-languages-2018/

Argonne Leadership Computing Facility3

Which Python? 2 or 3? Conda? …?
We have many pythons installed on theta:

intelpython27/2019.3.075

intelpython36/2019.3.075

Miniconda-* (2.7, 3.6, login or compute nodes …)

Cray-python/2.7, 3.6 ….

You are also able to bring your own python! Build from source, or use conda, or

use pip, or … [your favorite install method here!]

Beware to get the right libraries for performance (intel numpy vs normal numpy,

etc)

Argonne Leadership Computing Facility4

Virtualenv – use it!
https://virtualenv.pypa.io/en/latest/

“virtualenv is a tool to create isolated Python environments.” – from the docs

Virtual env is a way to isolate a python environment (either completely

encapsulated, or based on another python interpreter but with encapsulated

libraries). For example … (next slide)

https://virtualenv.pypa.io/en/latest/

Argonne Leadership Computing Facility5

Setting up a virtualenv: an example
cadams@thetalogin5 : ~
$ python -m virtualenv --system-site-packages test_env/
Using base prefix '/soft/interpreters/python/3.6/intel/2019.3.075'

New python executable in /gpfs/mira-home/cadams/test_env/bin/python
Installing setuptools, pip, wheel...

done.

cadams@thetalogin5 : ~

$ which python
/soft/interpreters/python/3.6/intel/2019.3.075/bin/python

cadams@thetalogin5 : ~
$ python

Python 3.6.8 |Intel Corporation| (default, Mar 1 2019, 00:10:45)
[GCC 4.8.2 20140120 (Red Hat 4.8.2-15)] on linux

Type "help", "copyright", "credits" or "license" for more information.
Intel(R) Distribution for Python is brought to you by Intel Corporation.
Please check out: https://software.intel.com/en-us/python-distribution

>>> ^D

cadams@thetalogin5 : ~
$ source test_env/bin/activate

(test_env)
cadams@thetalogin5 : ~

$ which python
/gpfs/mira-home/cadams/test_env/bin/python

(test_env)
cadams@thetalogin5 : ~

$ python
Python 3.6.8 |Intel Corporation| (default, Mar 1 2019, 00:10:45)
[GCC 4.8.2 20140120 (Red Hat 4.8.2-15)] on linux

Type "help", "copyright", "credits" or "license" for more information.
Intel(R) Distribution for Python is brought to you by Intel Corporation.

Please check out: https://software.intel.com/en-us/python-distribution
>>>

Argonne Leadership Computing Facility6

CPython: Under the hood

Python is a Read-Eval-Print Loop

• One line at a time

• No look-ahead for optimizations

• It is not thread safe, and therefore the Global Interpreter Lock enforces
single thread utilization

• Everything is an object

• Everything is a reference

You don’t need to know all the details, but it helps to have a basic understanding

Argonne Leadership Computing Facility7

Everything is an object, everything is a reference
Each object in python is reference counted: every time you create a reference to
it, it is counted, and when an object has no references to it, it is deleted.

Since everything is a reference, and everything is an object, python is very
friendly with letting you change types on the fly as input to functions, etc.

• You may even implement type specific logic with simple if/else
• You may even completely shoot yourself in the foot by not know object

types…
• Each object has to be queried for it’s type on the fly, and this causes a large

slow down. Maybe more than you realize!

Dynamic typing is one of python’s greatest assets for ease, and greatest
weaknesses for performance.

Argonne Leadership Computing Facility8

CPython
The core operation of python lines is via the interpreter, which itself is written in C.

• It doesn’t have to be, though, it is simply that the most common (by far)
implementation of python is writtin in C.

• As a C program itself, python has native compatibility to load C functions into
your own python programs - more on this later.

There are other implemetations of python: jython, iron-python, PyPy
• All of these have their own reasons for existing. In particular Pypy has a Just-

In-Time compiler for performance boosts.
• For HPC, CPython is perfectly acceptable and the different python versions

almost certainly are not your bottleneck.

Argonne Leadership Computing Facility9

Global Interpreter Lock
Cpython’s memory management is not thread safe, and the global interpreter
lock is an enforcer to prevent problems arising from this.

• It’s not all bad: it makes extensions easier to write, is generally faster on
single threads.

• It’s also almost entirely irrelevant in the HPC space where you have optimized
C libraries for compute heavy tasks.

Don’t fear the GIL. When you need concurrency in python, it’s typically best to
either:

• Use a C library or write one that does what you need, where you can manage
memory yourself.

• Use a clean parallelization paradigm like MPI (which has excellent python
bindings!)

• GIL is most impactful in compute heavy operations - optimized libraries exist!

Argonne Leadership Computing Facility10

Python Wrappers

“A foreign function interface (FFI) is a mechanism by which a program written in one programming language can call
routines or make use of services written in another.” – Wikipedia

For simple bindings, there is ctypes: https://docs.python.org/3/library/ctypes.html

For some projects, there is a C-API: https://docs.scipy.org/doc/numpy/reference/c-api.html

Cython can help expose in both directions: https://cython.org/

For complex projects, you can auto generate wrappers. Many options available:

https://wiki.python.org/moin/IntegratingPythonWithOtherLanguages

Boost python, sip, swig are popular and relatively well supported.

The best python code is using python to glue together high performance libraries

https://en.wikipedia.org/wiki/Programming_language
https://docs.python.org/3/library/ctypes.html
https://docs.scipy.org/doc/numpy/reference/c-api.html
https://cython.org/
https://wiki.python.org/moin/IntegratingPythonWithOtherLanguages

Argonne Leadership Computing Facility11

Doing python right

• Use optimized libraries, and use the right optimized libraries:

• Numpy from pip != numpy with mkl operations from intelpython.

• When in doubt, use the modules installed on Theta or contact the
datascience team.

• Don’t expect parallelism in python, except for very specific cases it’s better to
try with other models directly.

• MPI, OpenMP, etc.

Use the right tool for the right task

Argonne Leadership Computing Facility12

Doing python wrong

• Use the right data structures for your data: don’t use a list of floats when you
can use a numpy ndarray.

• Do loops with comprehensions instead of for:

• See example.

• Don’t compute with python

• Use numpy, tensorflow, torch, scipy, etc

• Be careful mixing and matching parallelism:

• Tensorflow/torch/numpy/mkl/mkldnn all use OpenMP or other threading,
and it is incredibly easy to oversubscribe with many threads.

• Mine own personal grudge: don’t ‘import perl’

It’s easy to mess up your python

Argonne Leadership Computing Facility13

Numpy

When you need performance in python on computation, think numpy.
• Supports N dimensional arrays with accessing and striding, sorting, indexing,

etc. It is a tensor library.
• Built in operations (FFTs, matmult, tensor ops)
• Heavily optimized with support for many architectures, targeted by industry for

optimizations for their products (intel has an optimized numpy)
• Is is the standard and reference for both performance and functionality:

• Tensorflow, pytorch play nice with numpy
• Numpy access patterns (strided access, masks, etc) are the functionality that

other frameworks try to match.

Argonne Leadership Computing Facility14

Scipy

When you need performance in python on computation for science operation,
think scipy.
• Well integrated with numpy, supports operations that numpy is missing

• Optimization, integration, linear algebra, FFT, image processing
• Scikit-learn is an additional step beyond scipy worth looking in to

Argonne Leadership Computing Facility15

Cython
“Cython is an optimising static compiler for both the Python programming language and the extended Cython
programming language (based on Pyrex). It makes writing C extensions for Python as easy as Python itself.”

• This is a half truth, it is not quite as easy.
• http://docs.cython.org/en/latest/index.html

Cython is a wrapper that looks at python code and turns it into C. You get some benefits:
• Static typing removes a lot of overhead and improves performance
• Look-ahead compilation allows for optimizations
• Cython turns your code into C, making it very easy to call out to C libraries.
• Native numpy support

Cython has some downsides:
• You end up re-implementing every API call with a wrapper function, by hand.
• You python code is not always clean
• The build system is a weird hybrid of python’s setup.py + C compilers

http://www.python.org/about/
http://docs.cython.org/en/latest/index.html

Argonne Leadership Computing Facility16

h5py
The h5py package is a Pythonic interface to the HDF5 binary data format.

• https://www.h5py.org/
• Compatible with hdf5 files directly from python, with pythonic interface and

compatibility with numpy and fancy-indexing.
• Is a Cython implemented wrapper of the HDF5 C API

• Development on github, large community of support
• Compatible with parallel IO using mpi4py – must have parallel hdf5 library

underneath.
• Has a lot of knobs for performance (chunking, compression) and it’s easy to

get great IO performance directly from python
• It’s also easy to get bad performance – it’s always worth it to study your IO

performance!

http://hdfgroup.org/
https://www.h5py.org/

Argonne Leadership Computing Facility17

Parallelism + Python
Parallelism in python is not necessarily hard, but the GIL limits your options

Threading is all within one python GIL, so suffers from serialization of calls in
python. But, simple interface and can be useful – relatively low overhead if you
can do parallel steps in IO or C libraries.

Multiprocessing sidesteps the GIL by using entirely separate subprocesses

• Easy interface like the threading module, but has overhead. Good for
compute-bound operations.

• Best way to use multiprocessing is to send messages, not share resources.
• At this point ... Just use MPI!

Argonne Leadership Computing Facility18

MPI + Python
MPI (Message Passing Interface) is the tool of choice for internode

communication, but is also valuable for intranode communication

• Be wary of too much parallelism: mixing and matching too many frameworks

can oversubscribe the resource and slow things down.

• Use “MPI + X” (MPI + OpenMP, MPI+tbb, MPI + Pthreads, etc…)

MPI has a tidy wrapper class in python using Cython.

• Collective operations supported

• Passing messages supported for numpy objects at near-C speed

• Passing messages supported to all python objects, but slower

• Leverages “pickle” for serialization

Argonne Leadership Computing Facility19

mpi4py
Building mpi4py on you laptop is easy, but on Theta (or any HPC system) make
sure to use the right MPI.

• For Theta, this usually means Cray’s MPI

Mpi4py is compatible with horovod for machine learning, and compatible with
h5py for parallel IO.

• If you run large scale distributed learning, odds are mpi4py is very useful to
your workflow to coordinate and manage your worker processes.

Mpi4py is a valid intranode parallelism scheme: instead of threading or
multiprocessing, you can use mpi4py to manage independent python processes.

• Additionally, this will easily scale beyond a single node.

Argonne Leadership Computing Facility20

Python Packages

From pypi.org: nearly 200k python projects are open source and available with
pip install.

There are massively popular packages (think numpy) and incredibly specific
packages.

Odds are, if you are doing something in python, someone has done it before and
released it and it is useful to you!

You can use virtualenv to add packages onto available pythons! (intelpython36,
cray-py, etc)

Argonne Leadership Computing Facility21

Python “Dependency Hell”
Python can load “modules” which is any set of python files with an __init__.py file.
• Sometimes, these pull in other modules or libraries
• Python checks sys.path to find modules, which include a home area, python’s

installation area, and other locations – you can examine and modify it
interactively too

• Package managers (pip, conda, even modules on theta) slip easily into
“dependency hell”

From Misha Salim:
1. When in doubt, check `which python`
2. Use virtualenvs for every project; minimize global environment pollution
3. Avoid LD_LIBRARY_PATH at all costs
4. If it's not in sys.path, it's not going to be found by the importer

https://medium.com/knerd/the-nine-circles-of-python-dependency-hell-481d53e3e025

Argonne Leadership Computing Facility22

Python “Dependency Hell”
https://xkcd.com/1987/

My Advice:

1. Keep it simple. Don’t install package you

don’t need.

2. Keep notes. Write down how you

installed packages into an env, and how

to set it up.

3. Use virtualenv when you have a python

binary but need additional packages –

mitigates conflicts.

4. Watch out for implicit dependencies in

package managers. Conda tensorflow

may install a new python and it’s own

hdf5. Do you really want this?

https://xkcd.com/1987/

Argonne Leadership Computing Facility23

The future of python

Python 3.

• Python 2 is end of life at the end of this year, and there is no assurance that it will be available on Theta after that.

• New packages are coming to python3, python2 support is limited.

Python 2 or Python 3?

Argonne Leadership Computing Facility24

Profiling Python

It sounds redundant: The best way to use python properly is to check if you are using it properly!

There are many tools available:

• Using printouts of times (crude but useful!)

• cProfile – building python profiler gives function call stacks and function times

• Line_profiler requires adding small snippets to your code, and running in a special wrapper, but gives line-by-line

measurements of the functions you specify. It is extremely useful for pure python code.

• Intel Vtune – great for mixed language workflows (which you should be using!) but challenging to use for python on

Theta. Does not run with many threads going underneath python (ie, tensorflow with OMP_NUM_THREADS ==
64)

I hope it is clear that performance can be an issue with python.

Argonne Leadership Computing Facility25

Examples

Matrix Multiplication

- pure python

- cython

- numpy

There are several examples provided to show some python tools:

