
Argonne Leadership Computing Facility!1

Parallel I/O & Storage at ALCF

Argonne Leadership Computing Facility6

Richard J Zamora

Data Science Group, ALCF
Argonne National Laboratory

rzamora@anl.gov

SDL Workshop — October 4th 2018

Argonne Leadership Computing Facility!2

Acknowledgement
 
Much of the content from this talk is borrowed from similar talks by other people. A
valuable source is public content from previous ALCF workshops, as well as The
Argonne Training Program on Extreme Scale Computing (ATPESC). Others
responsible for the content shared here:

 

– Kevin Harms, harms@anl.gov
– Venkatram Vishwanath, venkat@anl.gov
– Paul Coffman
– Francois Tessier
– Preeti Malakar
– Rob Latham
– Rob Ross
– Phil Carnes

Argonne Leadership Computing Facility!3

Preview 
 
  1. HPC I/O Basics

2. Parallel I/O Basics
3. ALCF Storage Overview
4. Optimizing I/O on Mira (IBM BG/Q - GPFS File System)
5. Optimizing I/O on Theta (Cray XC40 - Lustre File System)
6. Conclusions

Argonne Leadership Computing Facility!4

HPC I/O Basics
In HPC, I/O usually corresponds to the storage and retrieval of persistent data to and
from a file system (by a software application)

Key Points:

• Data is stored in POSIX files/directories
• HPC machines use parallel file systems (PFS) for I/O performance
• The PFS’ provides aggregate bandwidth

Argonne Leadership Computing Facility!5

Basic I/O Flavors
Basic flavors of I/O of concern at ALCF:

– Defensive
– Writing data to protect results from software

and/or system failures (a.k.a checkpointing)

– Priority: Speed

INCITE, 2016, James Kermode, University of Warwick

– Productive
– Reading and/or writing data as a necessary

component of the application workflow

– Priority: Speed, Organization, Provenance

ADSP, 2017, Doga Gursoy, Argonne NAtional Laboratory

Argonne Leadership Computing Facility

1.E-06

1.E-05

1.E-04

1.E-03

1997 2001 2004 2008 2010 2012 2013 2016 2018

Ra
tio

	o
f	I
/O

	(T
B/
s)
	to

	F
lo
ps
	(T
F/
s)

Top	500		#1	System	:	I/O	vs	FLOPS

!6

Historically: Compute has Outpaced I/O

Argonne Leadership Computing Facility!7

How Data is Stored on HPC Systems (like ALCF)

– HPC systems use the file system (FS)
model for storing data
– Use a file (POSIX) model for data access

– The FS is shared across the system
– There can be >1 FS on each system, and

FS’s can be shared between systems.

– POSIX I/O API
– Lowest-level I/O API

– Well supported: Fortran, C and C++ I/O
calls are converted to POSIX

– Simple: File is a stream of bytes

Image Source: Lantham et al. ATPESC 2014

POSIX File: Contiguous stream of bytes

1B

…

Argonne Leadership Computing Facility!8

Scalable I/O Requires a Parallel File System

…

…

Traditional: Serial I/O
(to local file system)

HPC: Parallel I/O (to shared file system)

Argonne Leadership Computing Facility!9

Several Popular Parallel File Systems

Argonne Leadership Computing Facility!10

Typical I/O Path

Compute nodes run user
application. Data model software
and some I/O transformations
are also performed here.

I/O forwarding nodes
(gateway nodes, LNET
nodes,…) shuffle data
between compute nodes
and storage.

Storage nodes run the
parallel file system.

External
Network

Disk
Arrays

Argonne Leadership Computing Facility!11

Parallel I/O provides Aggregate Bandwidth

Data must take multiple hops to get to/from disk -> high latency
Multiple disks can be accessed concurrently -> high aggregate bandwidth

I/O Data Movement
(Added latency)

5 GB/s

5 GB/s

5 GB/s

5 GB/s

 20 GB/s
Aggregate
≤

Argonne Leadership Computing Facility!12

Example: Large Parallel Operations are Faster

2K processes of IBM Blue Gene/P at ANL

Argonne Leadership Computing Facility!13

Mapping Files Onto Parallel Storage

In the PFS, files are broken
up into regions called:

blocks in GPFS

stripes in Lustre
Image Source: Lantham et al. ATPESC 2014

Argonne Leadership Computing Facility!14

Locking of File Blocks/Stripes
Relevant to GPFS & Lustre

File-X OST-N

GPFS Block Locking

8mb FS Block

Rank A Rank B

ION A ION B

Lustre Stripe Locking

IO Nodes:

– Block/Striped aligned I/O requests are important to avoid lock contention
(false data sharing)

Argonne Leadership Computing Facility!15

Example: Block-Aligned I/O is Faster

8K processes of IBM Blue Gene/Q at ANL

Argonne Leadership Computing Facility!16

Parallel I/O Basics
ALCF machines mostly rely on the parallel file system (PFS) for I/O performance.
Parallel algorithms and optimizations are needed to efficiently move data between
compute and storage hardware

Key Points:

• File-per-process I/O is not scalable
• MPI-IO (or a higher-level I/O library) is recommended

• Libraries include optimizations for collective I/O

Argonne Leadership Computing Facility!17

Types of Parallel I/O

Shared File ParallelFile-per-process (FPP) Parallel

0 1 n

0 1

n

……

…

…FPP can be fast for 101-103 ranks, but
cannot scale to extreme scales
(management and consumption issues)

Argonne Leadership Computing Facility!18

Mixing FPP with Shared Files: Sub-filing

At large scale, it can be optimal to use a shared file for each subset of processes
(Ex. Per-node)

…

0 1

…

Node-0

…

…

Node-1

… N

…

Node-2

…

…

File.0 File.1 File.2

Argonne Leadership Computing Facility!19

MPI-IO: MPI-Based POSIX-IO Replacement
– POSIX has limitations

– Shared-file parallel I/O is possible, but complicated (parallel access, buffing, flushing, etc. must be
explicitly managed)

– Independent MPI-IO

– Each MPI task is handles the I/O independently using non-collective calls

– Ex. MPI_File_write() and MPI_File_read()

– Similar to POSIX I/O, but supports derived datatypes (useful for non-contiguous access)

– Collective MPI-IO

– All MPI ranks (in a communicator) participate in I/O, and must call the same routines

– Ex. MPI_File_write_all() and MPI_File_read_all()

– Allows MPI library to perform collective I/O optimizations (often boosting performance)

– MPI-IO (or a higher-level library leveraging MPI-IO) is recommended on Mira & Theta

– Python codes can use the mpi4py implementation of MPI-IO

Argonne Leadership Computing Facility!20

A Simple MPI-IO Example*
// Create array to write (localbuf)
localbuf = (int *) malloc((N / size) * sizeof(int));
for(i=0; i<(N / size); i++) localbuf[i] = i;

// Determine file offset
offset = (N / size) * rank * sizeof(int);

// Let rank 0 Create the file
if(rank == 0){
 MPI_File_open(MPI_COMM_SELF, filename, MPI_MODE_CREATE|MPI_MODE_WRONLY, info, &fh);
 MPI_File_set_size(fh, filesize);
 MPI_File_close(&fh);
}

// Open the file for writing
MPI_File_open(MPI_COMM_WORLD, filename, MPI_MODE_WRONLY, info, &fh);
MPI_File_set_atomicity(fh, 0);

// Write the file
MPI_File_write_at_all(fh, offset, localbuf, (N/size), MPI_INT, &status);

// Close the file
MPI_File_close(&fh);

Note: Grey = Optional

Simple MPI-IO code to concatenate
local a 1-D arrays (on each rank) into
a single global array in a file.

Creating and pre-allocating the file on a single rank
can avoid metadata overhead

*More code is needed for functionality

Specifying that “atomic” ordering is unnecessary

Collective write, starting at “offset”

Argonne Leadership Computing Facility!21

Common Optimizations in MPI-IO

Compute
Operations

I/O Access

Data Sieving Two-Phase I/O
(Collective Aggregation)

X Y Z X Y Z X Y Z X Y Z

X X X X Y Y Y Y Z Z Z Z

Y Y Z Z Z ZX X X X Y Y

I/O Access

Argonne Leadership Computing Facility
!22

More Detail on Two-Phase I/O

X Y Z X Y Z X Y Z X Y Z

X X

X X Y Y

Write

Can overlap aggregation and I/O
(Each Aggregator = 2 buffers)

Aggregate

Typical collective I/O algorithm can be (internally) optimized in many ways…

FS Block/Stripe

Can select number of
aggregators and assign
ranks based on network
topology

Can align buffers
with blocks/stripes

Can use one-sided (RMA)
communication

Argonne Leadership Computing Facility!23

ALCF I/O Software Stack

I/O Libraries: HDF5, pNetCDF, etc.

MPI-IO

POSIX I/O

Parallel File System

Application Software

I/O
 In

te
rfa

ce
s

Argonne Leadership Computing Facility!24

High-level I/O Libraries at ALCF

– High level I/O libraries provide an abstraction layer above MPI-IO/POSIX

– Parallel HDF5 and NetCDF leverage MPI-IO (both available on ALCF Systems)

Argonne Leadership Computing Facility!25

ALCF Storage Overview
ALCF machines offer both GPFS and Lustre file systems (with Lustre only supported
on Theta)

Key Points:

• Use /projects/<your-project>/ for high-performance I/O
• Theta production PFS: Lustre (theta-fs0)
• Mira production PFS: GPFS (mira-fs0)

Argonne Leadership Computing Facility!26

ALCF Resources

Argonne Leadership Computing Facility!27

ALCF Storage Details

Property mira-fs0 theta-fs0 mira-fs1 mira-home
File system GPFS Lustre GPFS GPFS
Capacity 20 PB 10 PB 7 PB 1 PB
Performance 240 GB/s 210 GB/s 90 GB/s 45 GB/s
MD Perf 5000 creat/s 40000 c/s 5000 c/s 5000 c/s
Block Size 8 MiB 1 MiB 8 MiB 256 KiB
targets 896 56 336 72
drives 8960 4592 + 40 3360 720
ssd 512 112 12 120

Argonne Leadership Computing Facility!28

Important Considerations

– Use /projects/<your-project>/ for high-performance IO

– Automatically assigned to the appropriate parallel file system

– Note: Files are not backed up in /projects

– Storage space is managed by project quotas

– Files are not purged

– Users must manage their own space

Argonne Leadership Computing Facility!29

Optimizing I/O on Mira (Blue Gene/Q – GPFS)

Argonne Leadership Computing Facility!30

Mira I/O Infrastructure: Overview

Compute Node Rack
1024 compute nodes
16 bridge nodes

I/O Nodes
(Gateway)
2 bridge nodes
connect to each
I/O node

128:1

2 GB/s

GPFS File system
/mira-fs0
/mira-fs1
/mira-home

4 GB/s

SHARED

ISOLATED

Infiniband
QDR SAN
Connected to
Cooley & Cetus

Note: I/O Nodes are
dedicated resources when
running on at least 512 nodes

Note: 384 I/O Nodes

Argonne Leadership Computing Facility!31

IBM’s General Parallel File System (GPFS)

Name Type Blocksize Capacity Speed

mira-fs0 project 8 MB 19 PB 240 GB/s
mira-fs1 project 8 MB 7 PB 90 GB/s

mira-home home 256 K 1 PB -

IBM’s GPFS is used for all parallel file systems on Mira
– Uses client-side and server-side caching
– Metadata is replicated on all file systems
– Quotas are enabled

– myquota (home)
– myprojectquotas (project)
– Overrun quota error: -EQUOTA

Argonne Leadership Computing Facility!32

MPI-IO on Mira
Mira has great support for MPI-IO
– Leveraged by other major I/O libraries

– Look in /soft/libraries
– HDF5, NetCDF, pNetCDF, Adios, etc.

– Uses BG/Q-specific Optimizations
– Handles alignment on block boundaries
– Leverages Mira 5D Torus network

Important MPI-IO Recommendations
– Use collective routines (eg. MPI_File_write_at_all())
– Disable locking within the Blue Gene ADIO layer for non-overlapping writes using the

following environment variable:
– --env BGLOCKLESSMPIO_F_TYPE=0x47504653

Important Note
MPI-IO scales well, but may run out of
memory at full-machine scales

Usually related to MPI all-to-all calls and
discontinuous data types (Workarounds
discussed soon)

Argonne Leadership Computing Facility!33

MPI-IO BG/Q Driver Tuning
Advanced Options:
– Environment variable BGMPIO_NAGG_PSET=16 (default 8)
– Hint: cb_buffer_size=16m (change the collective aggregation buffer size)
– Hint: romio_no_indep_rw can improve collective file open/close performance

– Only does file open on aggregator ranks during MPI_File_open, for
independent I/O (eg MPI_File_write_at) non-aggregator nodes file open at
write time (deferred)

BGQ driver variables for memory-issue workarounds (often hurts performance):
– No MPI_Alltoall(v) calls: --envs BGMPIO_COMM=1
– Tune routing protocol and avoid heap fragmentation:

--envs PAMID_SHORT=0
--envs PAMID_DISABLE_INTERNAL_EAGER_TASK_LIMIT=1

Argonne Leadership Computing Facility!34

GPFS Block Alignment
Use block-aligned I/O when using shared files
– The GPFS project file systems are all 8 MB

– Unaligned access will be punished by GPFS locking
– Larger, block-aligned accesses will perform best

– Collective MPI-IO should take care of this for you

Example:
– MPI rank A and B happen to use two different I/O nodes
– Rank A writes the first MB of an 8 MB block

– Rank A must acquire the lock for this fs block
– Rank B writes the last MB of an 8 MB block

– Rank B tries to acquire the block for this block but must wait because it is in use
– Parallel I/O becomes serial for this workload

8mb FS Block

Rank A Rank B

ION A ION B

Argonne Leadership Computing Facility!35

Performance Tools on Mira
Darshan (https://www.alcf.anl.gov/user-guides/darshan)
– Stores I/O profiling summary in single compressed log file

– Look in: /gpfs/mira-fs0/logs/darshan/mira/<year>/<month>/<day>

TAU (https://www.alcf.anl.gov/user-guides/tuning-and-analysis-utilities-tau)
– “–optTrackIO” in TAU_OPTIONS

mpitrace (http://www.alcf.anl.gov/user-guides/hpctw)
– List performance of MPI_File* calls

– Show performance of underlying MPI-IO for IO libraries such as HDF5

https://www.alcf.anl.gov/user-guides/darshan)
https://www.alcf.anl.gov/user-guides/darshan)
https://www.alcf.anl.gov/user-guides/darshan)
http://www.alcf.anl.gov/user-guides/hpctw)
http://www.alcf.anl.gov/user-guides/hpctw)
http://www.alcf.anl.gov/user-guides/hpctw)

Argonne Leadership Computing Facility!36

Optimizing I/O on Theta (Cray XC40 – Lustre)

Argonne Leadership Computing Facility!37

Theta system Overview
Architecture: Cray XC40
Processor: 1.3 GHz Intel Xeon Phi 7230 SKU
Peak performance of 11.69 petaflops
Racks: 24
Nodes: 4,392
Total cores: 281,088
Cores/node: 64
Memory/node: 192 GB DDR4 SDRAM
(Total DDR4: 843 TB)
High bandwidth memory/node: 16 GB MCDRAM
(Total MCDRAM: 70 TB)

10 PB Lustre file system
SSD/node: 128 GB
(Total SSD: 562 TB)
Aries interconnect - Dragonfly configuration

Lustre

Note: 30 LNET Nodes

Argonne Leadership Computing Facility!38

Lustre File System Basics

Image: https://wiki.hpdd.intel.com/display/PUB/Components+of+a+Lustre+filesystem

Clients = LNET Router Nodes
MDS = Metadata Server
MDT = Metadata Target
OSS = Object Storage Server
OST = Object Storage Target

Each file is distributed over 1+ OSTs,
depending on the size and striping
settings for the specific file.

Argonne Leadership Computing Facility!39

Theta – Lustre Specification
Current Version: lfs 2.7.2.26

Hardware: 4 Sonexion Storage Cabinets
– 10 PB usable RAID storage
– 56 OSS (1 OST per OSS)

Performance:
– Total Write BW 172 GB/s, Total Read BW 240 GB/s
– Peak Performance of 1 OST is 6 GB/s

– Lustre client-cache effects can allow much higher BW

Note: OSS cache currently
disabled by hardware (Sonexion)

Argonne Leadership Computing Facility!40

Basic Idea
Files are striped across
OSTs using a predefined
striping pattern (pattern =
count & size)

Stripe count
The number of OSTs
(storage devices) used to
store/access the file
[Default = 1]

Stripe size
The width of each
contiguous OST access
[Default = 1m]

Note: 1m = 1048576

8mb file

OST0 OST1 OST3OST2

Stripe count = 4
OST0 OST1 OST3OST2

Example: Consider a single 8mb file with 1mb stripe size…

Lustre File Striping Basics
Key to Parallel Performance

OST0 OST0 OST0OST0

Stripe count = 1 [Default]
OST0 OST0 OST0OST0

OST0 OST1 OST3OST2

Stripe count = 8
OST4 OST5 OST7OST6

1mb Stripe

Argonne Leadership Computing Facility!41

Lustre File System Utility: lfs
Manual: http://doc.lustre.org/lustre_manual.pdf
– List available lfs arguments: lfs help
– List name and status of the various OSTs: lfs osts <path>
– Set/Get striping information: lfs getstripe <path>
– Set/Get striping information: lfs setstripe <args> <path>
– Check disk space usage: lfs df

Argonne Leadership Computing Facility!42

Example: lfs setstripe (IMPORTANT)

Command syntax:
lfs setstripe --stripe-size <size> --count <count> <file/dir name>
lfs setstripe –S <size> -c <count> <file/dir name>

The stripe settings are critical to performance
– Defaults are not optimal for large files

Argonne Leadership Computing Facility!43

Example:  
lfs getstripe

Argonne Leadership Computing Facility!44

Important Notes about File Striping
– Make sure to use the /project file system (NOT /home)
– /project is Lustre, /home is NOT

– Don’t set the stripe_offset yourself (let Lustre choose which OSTs to use)
– Default Striping is stripe_count=1 and stripe_size=1048576
– Files and directories inherit striping patterns from the parent directory
– Stripe count cannot exceed number of OSTs (56)
– Striping cannot be changed once file created
– Need to re-create file – copy to directory with new striping pattern to change it

Non-lfs Options:
– Can set stripe settings in Cray MPI-IO (striping_unit=size, striping_factor=count)
– Ex: MPICH_MPIIO_HINTS=*:striping_unit=<SIZE>:striping_factor=<COUNT>

– Can do ioctl system call yourself passing LL_IOC_LOV_SETSTRIPE with structure for count and size
– ROMIO example: https://github.com/pmodels/mpich/blob/master/src/mpi/romio/adio/ad_lustre/

ad_lustre_open.c#L114

Argonne Leadership Computing Facility!45

General Luster Striping Guidelines
Large Shared Files:
– More than 1 stripe (default) usually best
– Keep stripe count below the node count
– ~8-48 usually good (not 56 - let Lustre avoid slow OSTs)

– Larger than a 1mb stripe (default) usually best
– ~8-32 usually good
– Note: large stripe sizes can require memory-hungry collective I/O

File-per-process: Use 1 stripe

Small files: Use 1 stripe

Argonne Leadership Computing Facility!46

Cray MPI-IO

Argonne Leadership Computing Facility!47

Cray MPI-IO Overview
Cray MPI-IO is recommended on Theta
– Used by Cray-MPICH (default MPI environment on Theta - cray-mpich module)
– Based on MPICH-MPIIO (ROMIO)
– Optimized for Cray XC40 & Lustre
– Many tuning parameters: man intro_mpi

Underlying I/O layer for other I/O libraries
– HDF5 (module load cray-hdf5-parallel)
– PNetCDF (module load cray-netcdf-hdf5parallel)
– Python mpi4py (Ex: module load miniconda-3.6/conda-4.5.4)
– Python h5py (Ex: module load miniconda-2.7/conda-4.4.10-h5py-parallel)

Argonne Leadership Computing Facility!48

Collectives (two-phase I/O): MPI_File_*_all calls
– Aggregate data into large/contiguous stripe-size file accesses

Tuning aggregation settings:
– Number of aggregator nodes (cb_nodes hint) defaults to the striping factor (count)
– cray_cb_nodes_multiplier hint will multiply the number of aggregators
– Total aggregators = cb_nodes x cray_cb_nodes_multiplier
– Collective buffer size defaults to the stripe size

–cb_buffer_size hint (in ROMIO) is ignored by Cray
– ROMIO’s collective buffer is allocated (according to this setting), but not used

Note: To use open-source MPICH MPI-IO (ROMIO), use cb_align=3

●

Aggregators:

OST0 OST1

Tuning Cray-MPI-IO:
Collective Buffering

Or env: MPICH_MPIIO_CB_ALIGN=3

Argonne Leadership Computing Facility!49

Tuning Cray-MPI-IO: Extent-lock Contention
Each rank (client) needs its own lock to access a given file on an OST
– When 2+ ranks access same file-OST combination: extent lock contention

Mitigation: cray_cb_write_lock_mode=1 (shared lock locking mode)
– A single lock is shared by all MPI ranks that are writing the file.
– Lock-ahead locking mode (cray_cb_write_lock_mode=2) not yet supported by

Sonexion
– All file accesses MUST be collective

– romio_no_indep_rw must be set to true
– HDF5, PNetCDF, and Darshan wont work (rely on some independent access)

Example:
MPICH_MPIIO_HINTS=*:cray_cb_write_lock_mode=1:cray_cb_nodes_multiplier
=<N>:romio_no_indep_rw=true

File-X OST-N

Argonne Leadership Computing Facility!50

I/O Profiling Tools on Theta

Argonne Leadership Computing Facility!51

Cray-MPI: Environment Variables for Profiling
– MPICH_MPIIO_STATS=1

– MPI-IO access patterns for reads and writes written to stderr by rank 0 for each
file accessed by the application on file close

– MPICH_MPIIO_STATS=2

– set of data files are written to the working directory, one file for each rank, with the
filename prefix specified by the MPICH_MPIIO_STATS_FILE env variable

– MPICH_MPIIO_TIMERS=1

– Internal timers for MPI-IO operations, particularly useful for collective MPI-IO
– MPICH_MPIIO_AGGREGATOR_PLACEMENT_DISPLAY=1
– MPICH_MPIIO_AGGREGATOR_PLACEMENT_STRIDE
– MPICH_MPIIO_HINTS=<file pattern>:key=value:…
– MPICH_MPIIO_HINTS_DISPLAY=1
– MPICH_MPIIO_CB_ALIGN=3

– Turn off Cray’s MPI-IO Lustre File driver (not recommended for production)

Argonne Leadership Computing Facility!52

Darshan I/O Profiling
Open-source statistical I/O profiling tool (https://www.alcf.anl.gov/user-guides/darshan)
– No source modifications, lightweight and low overhead
– Finite memory allocation (about 2MB) - Overhead of 1-2% total

USE:
– Make sure postscript-to-pdf converter is loaded: module load texlive
– darshan module should be loaded by default
– I/O characterization file placed here at job completion:

/lus/theta-fs0/logs/darshan/theta/<YEAR>/<MONTH>/<DAY>

– Use darshan-job-summary.pl command for charts, table summaries:
darshan-job-summary.pl <darshan_file_name> --output darshansummaryfilename.pdf

– Use darshan-parser for detailed text file:
darshan-parser <darshan_file_name> > darshan-details-filename.txt

https://www.alcf.anl.gov/user-guides/darshan)
https://www.alcf.anl.gov/user-guides/darshan)

Argonne Leadership Computing Facility!53

Darshan Output Example

…

…

Argonne Leadership Computing Facility!54

Lustre Performance on Theta

Argonne Leadership Computing Facility!55

Dragonfly Network and Lustre Jitter
Communication is over shared networks (No job isolation)
– Currently 1 Metadata Sever (MDS) shared by all users
– MDS and/or OSS traffic surge can dramatically effect performance

When running IO performance tests, want either:
– run-time statistics (max, min, mean, median, etc.)
– Best of multiple trials (typically used here)
– Dedicated system

Argonne Leadership Computing Facility!56

Shared File – 8MB/proc – Independent I/O  
Client-side Caching DISABLED

- More OSTs is better
- 8 MB stripe size is sufficient

Argonne Leadership Computing Facility!57

Shared File – 8MB/proc – Independent I/O  
Client-side Caching ENABLED

- Many OSTs are NOT necessary
- 2 MB stripe size is sufficient

Argonne Leadership Computing Facility!58

Shared File – 1MB/proc – Collective I/O 
Client-side Caching ENABLED - More OSTs is better

- Larger stripe size is better
 (up to 16 MB)

Argonne Leadership Computing Facility!59

Collective I/O Shared-lock Performance
B

W
 (G

B
/s

)

0

12.5

25

37.5

50

cray_cb_nodes_multiplier
1 2 3 4

MPI-IO Write Raw File Write

IOR on 256 nodes; 16 ppn; 48 OSTs;
1MB Stripe; 1 MB Transfer size

‘Raw File Write’ times taken from
MPICH_MPIIO_TIMERS=1 trace

Raw File write linearly better
(MPI-IO 1.5x faster at 4)

Argonne Leadership Computing Facility!60

Collective I/O vs Independent I/O  
Discontiguous Data

pioperf on 256 nodes; 32 ppn; 48 OSTs;
8 MB Stripe; 3 GB shared file

B
W

 (M
B

/s
)

0

100

200

300

400

500

600

700

Collective Independent

Write All Ranks
Read All Ranks
Write All Nodes
Read All Nodes

E3SM Climate Modeling Parellel I/O
Library performance test tool (pioperf)

8192 ranks with highly non-contiguous
data – every rank accesses every
stripe

PNetCDF interface (MPI-IO backend)

Argonne Leadership Computing Facility!61

Collective I/O vs Independent I/O  
Parallel HDF5

Collective I/O is often more
important for write operations
on Theta

HDF5 Exerciser Benchmark

Argonne Leadership Computing Facility!62

Node-Local SSD Utilization on Theta

Argonne Leadership Computing Facility!63

Node Local SSDs on Theta – NOT a Burst Buffer
Local 128 GB SSD attached to each node
– Need to be granted access – PI contact support@alcf.anl.gov

https://www.alcf.anl.gov/user-guides/running-jobs-xc40#requesting-local-ssd-
requirements

SSD Use Cases:
– Store local intermediate files (scratch)
– Legacy code initialization with lots of small data files – every rank reads
– Untar into local ssd

Tiered storage utility currently unavailable (Under investigation)

mailto:support@alcf.anl.gov
https://www.alcf.anl.gov/user-guides/running-jobs-xc40#requesting-local-ssd-requirements
https://www.alcf.anl.gov/user-guides/running-jobs-xc40#requesting-local-ssd-requirements
https://www.alcf.anl.gov/user-guides/running-jobs-xc40#requesting-local-ssd-requirements
https://www.alcf.anl.gov/user-guides/running-jobs-xc40#requesting-local-ssd-requirements
https://www.alcf.anl.gov/user-guides/running-jobs-xc40#requesting-local-ssd-requirements

Argonne Leadership Computing Facility!64

Using the SSDs on Theta
To request SSD, add the following in your qsub command line:
– --attrs ssds=required:ssd_size=128
– This is in addition to any other attributes that you need
– ssd_size is optional

The SSD are mounted on /local/scratch on each node
– Data deleted when cobalt job terminates

SSD I/O Performance (per process): Read 1.1 GB/s – Write 175 MB/s
– Can scale to two processes
– Outperforms Lustre at scale (aggregated bandwidth)
– Node-limited scope
– Requires explicit manual programming

Argonne Leadership Computing Facility!65

Node-Local SSD Performance

W-SSD

R-SSD

Node-local SSD vs Lustre
IOR, 1024 nodes, 2 ppn, 1 fpp

SSD performance is
more scalable than
Lustre. Beyond 256
nodes, SSD’s can
provide a significant
advantage

Capacity 128 GB
Sequential Read 3100 MB/s
Sequential Write 700 MB/s

Capacity 128 GB
Sequential Read 2150 MB/s
Sequential Write 1550 MB/s

Model SM961 drives

Model SM951 drives

Argonne Leadership Computing Facility!66

- High-performance I/O on both Mira and Theta often require MPI-IO
(or an I/O library)

- Key to Theta is efficient Lustre access
- Choose appropriate striping
- Use optimized Cray MPI-IO
- Use I/O libraries (HDF5, PNetCDF)

- Use local SSDs on Theta to scale small-file I/O, etc

ALCF Staff is available to help!

Thank You!

Conclusions

