
Carlos Rosales-Fernandez

Intel® Developer Products Division

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
2

Overview

This talk is not intended to teach basic OpenMP*, but rather focus on new
capabilities and an emphasis on application to the Intel® Xeon Phi x200
processors

 Brief introduction to OpenMP*

 OpenMP* tasking

 Using OpenMP* SIMD instructions

 OpenMP* affinity

 Pure OpenMP*

 Hybrid MPI+OpenMP*

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
3

What is OpenMP*?

OpenMP* stands for Open Multi-Processing. It provides:

 Standardized directive-based multi-language high-level parallelism.

 Portable and Scalable model for shared-memory parallel programmers.

 Language support for C/C++/FORTRAN.

 Provides APIs and environment variables to control the execution of parallel regions.

 Latest specs and examples are available at http://www.openmp.org/specifications/.

 Supported by LLVM, Visual Studio Compiler, Intel Compiler, GNU GCC and others.

http://www.openmp.org/specifications/

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
4

OpenMP* Programming Model

Real world applications are a mix of serial and inherently parallel regions.

OpenMP* provides Fork-Join Parallelism as a means to exploit inherent parallelism in an
application within a shared memory architecture.

 Master thread executes in serial mode until a parallel construct is encountered.

 After the parallel region ends team threads synchronize and terminate, but master
continues.

Parallel Regions

Master

Thread

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
5

OpenMP* Constructs

Parallel - thread creation

 parallel

Work Sharing - work distribution among threads

 do, for, sections, single

Data Sharing - variable treatment in parallel regions and serial/parallel transitions

 shared, private

Synchronization - thread execution coordination

 critical, atomic, barrier

Advanced Functionality

 Tasking, SIMD, Affinity, Devices (offload)

Runtime functions and control

#pragma omp parallel

{

#pragma omp for

for(int i = 0; i < N; i++)

{

a[i] = b[i] + c[i];

}

}

B
a

si
c

C
o

m
p

o
n

e
n

ts

!$OMP PARALLEL

!$OMP DO

do i = 1, N

a(i) = b(i) + c(i);

end do

!$OMP END PARALLEL

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
7

Some Background

Prior to standard version 3.0, OpenMP* was focused exclusively on Data
Parallelism, distributing work over threads executing the same code.

This work sharing model presented some limitations

 A need for a known loop count

 Very limited ability for dynamic scheduling

 Inconvenient for naturally task-parallel problems (dependencies, nesting)

Task parallelism constructs were introduced to complement the already
existing set that supported data parallelism

Task parallelism is particularly useful in irregular computing

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
8

What is an OpenMP* Task?

From the standard document: “specific instance of executable code and its data
environment”

 Explicit task: work generated by the task construct

 Implicit task: threads of a parallel region

In this section of the talk I will be only discussing explicit tasks.

By default tasks are deferrable, so the generating thread may execute it
immediately or queue it

#pragma omp task

myfunc();

#pragma omp task

for(int i = 0; i < N; i++){ … }

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
9

Sibling tasks

The taskwait construct can be used to wait
for deferred task completion at some point
in the code

Nested tasks

Synchronizing siblings and their
descendants requires a taskgroup

Task Synchronization

#pragma omp task

myfunc();

#pragma omp task

for(int i = 0; i < N; i++){ … }

#pragma omp taskwait

#pragma omp taskgroup

{

#pragma omp task

myfunc();

#pragma omp task

{

for(int i = 0; i < N; i++){

#pragma omp task

nestedfunc();

}

}

}

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
10

Often an application can be decomposed into
tasks which can execute simultaneously.

Following the Directed Acyclic Graph (DAG)
shown on the right:

 Tasks Alice, Bob and Cy can start executing
simultaneously.

 Boss can only be executed after Alice and
Bob complete execution.

 BigBoss can only be executed after Cy and
Boss complete execution.

Task Decomposition

a = alice();

b = bob();

s = boss(a,b);

c = cy();

printf("%f\n", bigboss(s,c));

Alice Bob

Boss Cy

Big
Boss

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
11

#pragma omp parallel

{

#pragma omp single

{

#pragma omp task

a = alice();

#pragma omp task

b = bob();

#pragma omp task

c = cy();

}

}

s = boss(a, b);

printf ("%f\n", bigboss(s,c));

Parallel Execution of Tasks

Start parallel region, forking N threads

Use a single thread to generate the tasks

Each independent code section may be defined as a task

Once generated each task may be
performed by any available thread in the
parallel region.

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
12

#pragma omp parallel

{

#pragma omp single

{

#pragma omp taskgroup

{

#pragma omp task depend(out:a)

a = alice();

#pragma omp task depend(out:b)

b = bob();

#pragma omp task depend(out:c)

c = cy();

#pragma omp task depend(in:a,b) depend(out:s)

s = boss(a, b);

#pragma omp task depend(in:s,c)

printf ("%f\n", bigboss(s,c));

}

}

}

depend clause allows to specify
dependencies among tasks

depend(<in|out|inout>:<variables>)

Based on dependencies boss() can start
executing once alice() and bob() are done.

Using the depend clause it is possible to
execute cy and boss simultaneously

The taskgroup directive creates an
implicit synchronization point, but it is
optional in this example.

Better Scheduling with Depend Clause

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
13

void merge_sort_openmp(int a[], int tmp[], int first, int last)

{

if (first < last) {

int middle = (first + last + 1) / 2;

if (last - first < 5000) {

merge_sort(a, tmp, first, middle - 1);

merge_sort(a, tmp, middle, last);

} else {

#pragma omp task

merge_sort_openmp(a, tmp, first, middle – 1);

#pragma omp task

merge_sort_openmp(a, tmp, middle, last);

#pragma omp taskwait

}

merge(a, tmp, first, middle, last);

}

}

Merge sort is common recursive algorithm

 Its recursive nature used to pose a
challenge in terms of expressing the
parallelism.

 OpenMP* Tasking helps express the
parallelism in recursive calls as shown
below.

 Explicit taskwait synchronization forces
a wait until all sibling tasks complete
execution.

 Merging phase can’t start until all the
tasks spawned above have completed.

Parallelize Recursions

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
14

Other Interesting Tasking Tidbits

Tasks can be stopped and continued (at scheduling points). By default tasks are
tied so they can only be continued by the same thread that started them (hot
cache). This behavior can be overridden with the untied clause

#pragma omp task untied

You may introduce your own scheduling points using the taskyield directive

#pragma omp taskyield

The taskloop directive may be used to schedule loop iterations as independent
tasks with a single generator (Intel® Compiler version 18+)

#pragma omp taskloop [[grainsize|numtask] [untied] [nogroups] [priority]]

for(i = 0; i < N; i++){ …}

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
15

Tasking Summary

Introduced to enable task-parallelism in shared memory architectures

Mostly used in irregular computing

Tasks are typically generated by a single thread

Dependencies can be specified to improve scheduling efficiency

Untied task generators can ensure progress

First-private is default data-sharing attribute

Shared variables remain shared

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
17

OpenMP* SIMD

A few critical capabilities were introduced in OpenMP* with the standard
specification 4.0 (not an exhaustive list!)

 Target Constructs : Accelerator support

 Task Groups/Dependencies : Runtime task dependencies & synchronization

 SIMD : fine grained data level parallelism

 Affinity : Pinning workers to cores/HW threads

Refinements to SIMD were also introduced in specification 4.5

SIMD is of critical importance on Theta due to the 512bit width of the KNL processors

Affinity is also of critical importance with 256 threads per socket

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
18

Multiple clauses available

 safelen(length)

 simdlen(length)

 linear(list[:linear-step])

 aligned(list[:alignment])

 private(list)

 lastprivate(list)

 reduction(op: list)

 collapse(n)

The OpenMP* SIMD directive

#pragma omp simd [clause]

for(int i = 0; i < N; i++)

{

...

}

!$omp simd [clause]

do i = 1, N

...

end do

!$omp end simd

WARNING: The compiler
ignores dependencies when
using the simd directive .

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
19

Details and Limitations

Do/For-loop has to be in “canonical loop form” (see OpenMP 4.0 API:2.6)

safelen(n) : The compiler can assume a vectorization for a vector of length
of n to be safe

simdlen(n) : Preferred vector length

linear(var:step) : For every iteration of the original scalar loop var is
incremented by step. Therefore it will be incremented by step * vector_length
for the vectorized loop.

aligned(var:base): Assert that var is aligned to base bytes; (default is
architecture specific alignment)

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
20

SIMD Example

This example instructs the compiler to ignore data dependencies, asserts array
alignment, and indirectly mitigates the control flow dependence.

OpenMP* SIMD must be enabled at compilation time with either -qopenmp
or -qopenmp-simd flags

#pragma omp simd safelen(32) aligned(a:64, b:64)

for(int i = 0; i < N; i++)

{

a[i] = (a[i] > 1.0) ? a[i]*b[i] : a[i+off]*b[i];

}

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
21

Applying the declare simd construct to a
function creates one or more versions of
the function that can process multiple
arguments using SIMD instructions from a
single invocation from a SIMD loop.

Multiple clause options

 simdlen(length)

 linear(list[:linear-step])

 aligned(list[:alignment])

 uniform(list)

 inbranch

 notinbranch

SIMD Enabled Functions

#pragma omp declare simd [clause]

double work(double *a,double *b,int off);

function work(a,b,off)

!$omp omp declare simd [clause]

implicit none

integer :: off

double precision :: a(*), b(*)

...

end function

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
22

SIMD Enabled Function Example

#pragma omp declare simd simdlen(16) notinbranch uniform(a, b, off)

double work(double *a, double *b, int i, int off)

{

return (a[i] > 1.0) ? a[i]*b[i] : a[i + off]*b[i];

}

void vec2(double *a, double *b, int off, int len)

{

#pragma omp simd safelen(64) aligned(a:64, b:64)

for(int i = 0; i < len; i++)

{

a[i] = work(a, b, i, off);

}

}

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
23

SIMD + Threads

By combining syntax we can both parallelize and vectorize a loop:

#pragma omp parallel for simd [clause]

!$omp parallel do simd [clause]

Where the clauses are those valid for either a do/for directive or a simd
directive.

Loop will distributed among threads using chunks that are multiples of the
vector size

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
24

SIMD on Theta

Ensure safelen and simdlen are compatible with AVX512

 Minimum of 8 for double precision

 Minimum of 16 for single precision

Use the processor clause

 Extension introduced in Intel Compiler version 17

 Use processor(mic_avx512) to target KNL

Remember not all vector operations are equally effective

 Alignment (array + accesses)

 Strided access (gather/scatter operations reduce performance)

 Masking (enables conditional execution, but at a cost)

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Thread Affinity in OpenMP*

OpenMP* 4.0 introduces the concept of Places and Policies

 Set of threads running on one or more processors

 Places can be defined by the user

 Predefined places available: threads, cores, sockets

 Predefined policies : spread, close, master

And means to control these settings

 Environment variables OMP_PLACES and OMP_PROC_BIND

 Clause proc_bind for parallel regions

Optimal settings depend on application and workload

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
27

Pure OpenMP* on Theta

For pure OpenMP* based codes the most effective way to set affinity is to
disable affinity in aprun and then use OpenMP settings to bind threads.

Disabling affinity with aprun is simple:

$ aprun -n 1 -N 1 -cc none ./exe

Now threads can be pinned to specific hardware resources using the
OMP_PLACES and OMP_PROC_BIND environmental variables.

Rich set of options with lots of flexibility and configuration granularity, but a few
simple setups cover the vast majority of production cases.

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
28

Pinning Step 1: OMP_PLACES

Two levels of granularity. You may specify a policy:

OMP_PLACES=<policy>

Where policy may be

 sockets : threads are allowed to float on sockets (multiple cores)

 cores : threads are allowed to float on cores (multiple logical processors)

 threads : threads are bound to specific logical processors

Or you may specify a list:

OMP_PLACES={lower_bound:length:stride}:repeat:increment

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
29

Pinning Step 2: OMP_PROC_BIND

To specify how threads are bound within the defined places use:

OMP_PROC_BIND=<policy>

Where policy must be chosen from:

 close : threads paced consecutively, as near to the master place as possible

 spread : threads spread equally on hardware to use most resources

 master : threads placed on master place to enhance locality

Note that specifying master could lead to heavy oversubscription of hardware
resources, depending on the defined places.

It is possible to print out your pining specification as interpreted by OpenMP* using

OMP_DISPLAY_ENV=true

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
30

Some examples

OMP_NUM_THREADS=4; OMP_PLACES=“{0:4:2}”

Bound to [0] [2] [4] [6]

OMP_NUM_THREADS=4; OMP_PLACES=threads; OMP_PROC_BIND=close

Bound to [0] [64] [128] [192]

OMP_NUM_THREADS=4; OMP_PLACES=threads; OMP_PROC_BIND=spread

Bound to [0] [16] [32] [48]

OMP_NUM_THREADS=4; OMP_PLACES=cores; OMP_PROC_BIND=spread

Bound to [0,64,128,192] [16, 80, 144, 208] [32, 96, 160, 224] [48, 112, 176, 240]

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
31

When using hybrid applications aprun must be configured to create pinning ranges
for each MPI task, and then OpenMP variables may be set to control thread pinning
within each rank processor range. Example: 4 MPI tasks, 16 , 8 nodes

export OMP_NUM_THREADS=16

export OMP_PLACES=cores;

export OMP_PROC_BIND=spread

aprun -n 32 -N 4 -cc depth -d 64 -j 4 ./exe

Thread 0 Thread 1 … Thread 15

Task 0 [0, 64, 128, 192] [1, 65, 129, 193] … [15, 79, 143, 207]

Task 1 [16, 80, 144, 208] [17, 81, 145, 209] … [31, 95, 159, 223]

Task 2 [32, 96, 160, 224] [33, 97, 161, 225] … [47, 111, 175, 239]

Task3 [48, 112, 176, 240] [49, 113, 177, 241] … [63, 127, 191, 255]

Hybrid MPI + OpenMP*

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
32

NUMA considerations

Locality

 Local memory accesses reduce latency.

 Use Linux first touch policy to your advantage by initializing data in an OpenMP* loop in the
same way that it will be used later.

MCDRAM

 Provides higher bandwidth

 Important to make a conscious choice if running on flat mode

If running on flat mode you may use numactl to attach to the numa node 1 (MCDRAM) :

aprun -n <ntot> -N <ppn> numactl --membind=1 ./exe

aprun -n <ntot> -N <ppn> numactl --preferred=1 ./exe

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
33

Recommended settings for Theta

The following setup is recommended for jobs using up to 4 threads per core

OMP_PLACES=cores

OMP_PROC_BIND=spread

aprun -n <totalTasks> -N <tasksPerNode> -cc depth -d 256/<tasksPerNode> -j 4

If using multiple threads per core you may want to test the effect of chanign
gthe default wait policy to passive:

OMP_WAIT_POLICY=passive

