
© 2018 Arm Limited

Ryan Hulguin

ryan.hulguin@arm.com

Debugging and
Profiling with

DDT and Map

SDL Workshop

October 3, 2018

Argonne Leadership Computing Facility2

Agenda

ÅGeneral Debugging and Profiling Advice

ÅArm Software for Debugging and Profiling

ÅDebugging with DDT

ÅProfiling with MAP

ÅTheta Specific Settings

Argonne Leadership Computing Facility3

Debugging

Transforming a broken program to a working one

How? TRAFFIC!

ïTrack the problem

ïReproduce

ïAutomate - (and simplify) the test case

ïFind origins ïwhere could the ñinfectionò be from?

ïFocus ïexamine the origins

ïIsolate ïnarrow down the origins

ïCorrect ïfix and verify the test case is successful

Argonne Leadership Computing Facility4

Profiling

Profiling is central to understanding and improving application performance.

No

No

Profile
Yes

Yes

Yes

Refine the
Profile

File I/O

Memory

CPU

No

No

Buffers, data formats,
in-memory filesystems

Collectives, blocking,
non-blocking, topology,

load balance

Bandwidth/latency,
cache utilization

Vectors, branches,
integer, floating point

Yes

Identify Hotspots Focus Optimization

50x

10x

5x

2x

Communication

Argonne Leadership Computing Facility5

Performance Improvement Workflow

Get a realistic
test case

Profile your
code

Look for the
significant

What is the
nature of the

problem?

Apply brain to
solve

Think of the
future

© 2018 Arm Limited

Arm Software

Argonne Leadership Computing Facility7

Arm Forge

An interoperable toolkit for debugging and profiling

The de-facto standard for HPC development

ςAvailable on the vast majority of the Top500 machines in the world

ςFully supported by Arm on x86, IBM Power, Nvidia GPUs, etc.

State-of-the art debugging and profiling capabilities

ςPowerful and in-depth error detection mechanisms (including memory
debugging)

ςSampling-based profiler to identify and understand bottlenecks

ςAvailable at any scale (from serial to parallel applications running at
petascale)

Easy to use by everyone

ςUnique capabilities to simplify remote interactive sessions

ςInnovative approach to present quintessential information to users
Very user-friendly

Fully Scalable

Commercially supported

by Arm

Argonne Leadership Computing Facility8

Arm Performance Reports

Characterize and understand the performance of HPC application runs

Gathers a rich set of data

ςAnalyses metrics around CPU, memory, IO, hardware counters, etc.

ςPossibility for users to add their own metrics

Build a culture of application performance & efficiency awareness

ςAnalyses data and reports the information that matters to users

ςProvides simple guidance to help improve workloadsΩ efficiency

Adds value to typical usersΩ workflows

ςDefine application behaviour and performance expectations

ςIntegrate outputs to various systems for validation (e.g. continuous
integration)

ςCan be automated completely (no user intervention)Relevant advice

to avoid pitfalls

Accurate and astute

insight

Commercially supported

by Arm

Argonne Leadership Computing Facility9

Run and ensure application correctness

Combination of debugging and re-compilation

Å Ensure application correctness with Arm DDT scalable debugger
Å Integrate with continuous integration system.
Å Use version control to track changes and leverage ForgeΩs built-in VCS support.

Examples:
$> ddt -- offline apru n Ƶn 48 ./example
$> ddt -- connect aprun Ƶn 48 ./example

Argonne Leadership Computing Facility10

Understand application behaviour

Set a reference for future work

Å Choose a representative test case with known behavior
Å Analyse performance with Arm Performance Reports

Example:

$> perf - report aprun Ƶn 16 mmult_c.exe

Is it
performant?

Argonne Leadership Computing Facility11

Optimize the application for Arm

Å Measure all performance aspects with Arm MAP parallel profiler
Å Identify bottlenecks and rewrite some code for better performance

Examples:
$> map -- profile aprun Ƶn 48 ./example

if not, use the
Arm MAP profiler
for optimization

© 2018 Arm Limited

Debugging with DDT

Argonne Leadership Computing Facility13

Arm DDT ïThe Debugger

Who had a rogue behaviour ?

ïMerges stacks from processes and threads

Where did it happen?

ïleaps to source

How did it happen?

ïDiagnostic messages

ïSome faults evident instantly from source

Why did it happen?

ïUnique ñSmart Highlightingò

ïSparklines comparing data across processes

Run

with Arm tools

Identify
a problem

Gather info
Who, Where,

How, Why

Fix

Argonne Leadership Computing Facility14

Preparing Code for Use with DDT

As with any debugger, code must be compiled with the debug
flag typically - g

It is recommended to turn off optimization flags i.e. ïO0

Leaving optimizations turned on can cause the compiler to

optimize out some variables and even functions making it

more difficult to debug

Argonne Leadership Computing Facility15

Segmentation Fault

In this example, the application crashes with a segmentation error outside of DDT.

What happens when it runs under DDT?

Argonne Leadership Computing Facility16

Segmentation Fault in DDT

DDT takes you to the exact line where Segmentation fault occurred, and you can

pause and investigate

