Debugging and
Profiling with
DDT and Map

Agenda

AGeneral Debugging and Profiling Advice
AArm Software for Debugging and Profiling
ADebugging with DDT

AProfiling with MAP

ATheta Specific Settings

2 Argonne Leadership Computing Facility Argonne &

AAAAAAAAAAAAAAAAAA

Debugging

Transforming a broken program to a working one
How? TRAFFIC!

| Track the problem

I Reproduce

I Automate - (and simplify) the test case

IFindoriginstT wher e coul d the ni:r
| Focus T examine the origins

| Isolate T narrow down the origins

I Correct 1 fix and verify the test case Is successful

3 Argonne Leadership Computing Facility Argonne &

AAAAAAAAAAAAAAAAAA

Profiling

Profiling Is central to understanding and improving application performance.
|dentify Hotspots Focus Optimization

P e e

: Yesf

Yesi

" Yes |

Refine the . Yes

1

1

1

No.]

\ 1

/

\\ y
\\\ ///

4 Argonne Leadership Computing Facility Argonne &

Performance Improvement Workflow

Get a realistic Profile your
test case code

Look for the
significant

What is the
nature of the =
problem?

5 Argonne Leadership Computing Facility

AAAAAAAAAAAAAAAAAA

+ + . + + + +

+ + + + + + +

rm Software

+ + + + > +

+ + . + + + + . + + + +
+ + + + + + + + -~ o+ + +
+ 4 . . - . . 4 =+ + =+ +

© 2018 Arm Limited q r m

+ = T .n .n T+ .n + & 5 + &

Arm Forge

An interoperable toolkit for debugging and profiling

7 Argonne Leadership Computing Facility

The defacto standard for HPC development

¢ Available on the vast majority of the Tes@Omachines in the world
¢ Fully supported by Arm or8%, IBM Power, Nvidia GPUs, etc.

Stateof-the art debugging and profiling capabilities

¢ Powerful and irdepth error detection mechanisms (including memory
debugging)

¢ Samplingbased profiler to identify and understand bottlenecks

¢ Available at any scale (from serial to parallel applications running at
petascalé

Easy to use by everyone

¢ Unique capabilities to simplify remote interactive sessions
¢ Innovative approach to present quintessential information to users

AAAAAAAAAAAAAAAAAA

Arm Performance Reports

Characterize and understand the performance of HPC application runs

Gathers a rich set of data
'ac"\\ .
) ¢ Analyses metrics around CPU, memory, 10, hardware counters, etc.
Commercially supported ¢ Possibility for users to add their own metrics
by Arm
Build a culture of application performance & efficiency awareness
@ ¢ Analyses data and reports the information that matters to users
¢ Provides simple guidance to help improve workldadBciency
Accurate and astute
insight Adds value to typical usedsorkflows
¢ Define application behaviour and performance expectations
)6<J ¢ Integrate outputs to various systems for validation (e.g. continuous
X integration)
Relevant advice ¢ Can be automated completely (no user intervention)
to avoid pitfalls
8 Argonne Leadership Computing Facility Argonne &

Run and ensure application correctness

Combination of debugging and re-compilation

A Ensure application correctness witti
A Integrate with continuous integration system.
A Use version control to track changes and leverage M®igdltin VCS support.

Examples:
$> ddt -
$> ddt -

offine aprun Zn 48 ./example
connect aprun Zn 48 ./example Fio Et Vow Conkl Toos Window ol

rEEZw S AR EEE ! O-D-
Current Group: All = Focus on current: ® Group © Process © Thread [IStep Threads Together
= CorE]EI e]

Create Group

Project Files B® m "Locals | Current Line(s) Current Stack Raw Command
Search (Cirl+K)) 107 { Visualization x
e o A 108 tables[x][y] = (x+1)*(v+1}; IF\ o :
. X =l 1na A= mu rAnE & 1- File View Viewpoin
& % crep, Multi-Dimensional Array Viewer x
= crep, <[l Process 0
= ® crep, Array Expression: tables[$i][$)] - Evaluate
: Z gz_: Distributed Array Dimensicns: ‘Nul‘le ~| How do | view distributed arrays? Cancel \rad
& " “’sf: Staggered Array What does this do? ~ Align Stack Frames
- = [Crs_
15 P 2:17.256|0-7 Play -m Range of $i Range of §j Auto-update
16| @ |2:18.048|4-7 Process stopped at breakpoint in main (cpi.c:50). * ;"“ From: [0 {5/ From: |0 =l
® ful — -
17 Additional Information ® fur To: " [5] || To: " .
Values il = | | . |
¥ Stacks : — 8 myid: -~ from 0 to 7 n: — 100 InputiOutput | DiseS Bovs gl poeavaliColme i £
Processes Function | procs: — 8 myid: ~ from 0to 7 n: — 100 Stacks :
47 ‘main (cpi.c:50) B oo —Ro0 T Only show if: See Examples
18 2:19.048 |nfa Select process 4 mprocs: — 8 myid: — from 010 7 n: — 100 ?: Data Table | Statistics |
19 AdTenE) emEeET B — 16 myid— [from 0167 i —T100 4 2 Goto ¥ Visualize # Export Full Window Glose |
- 4 i F
» Current Stack mprocs: — 8 myid: .=~ from 0 to 7 n: — 100 4 o 1 2 3 4 5 6 7 8 9 10 1
procs: — 8 myid: .~ from 0'to 7 n: — 100 o i0 q 2 3 4 s o 7 d 9 1 11 19
» Locals mprocs: — 8 myid- — from 010 7 n- — 100 s 1 I BT BT BT RET: BET % e Y
: — 8 myid: _~~ from 0 to 7 n: — 100
10(2:17.832 |main (cpi.c:46) | 0-7 done: — 0i: .~ from 73 to 80 numprocs: — 8 myid: .~ from 0 to 7 n: — 100
11(2:18.323 |main (cpi.c:46) | 0-7 done: — 0i: .~ from 81 to 88 numprocs: — 8 myid: .-~ from 0 to 7 n: — 100
12(2:18.323 |main (cpi.c:46) | 0-7 done: — 0i: .~ from 89 to 96 numprocs: — 8 myid: .=~ from 0 to 7 n: — 100
13]2:18.325 | main (cpi.c:46) |0-3 done: — 0i: -~ from 97 to 100 numprocs: — 8 myid: =~ from 0 to 3 n: — 100 Ar On ne °
9 Argo n gNATIONAL LABORATORY

Understand application behaviour

Set a reference for future work

performant?

mpiexec ./mmult_c.exe 7168
1 node (28 physical, 56 logical cores per m
125 GiB per node

28 processes

A Choose a representative test case with kndvahavior ‘
A Analyse performance witArm Performance Reports o ’

33 seconds
short/c25/pw9396/allinea_wshop-dayl

0_charac_performance

Example:
$> perf - report

Summary: mmult_c.exe is Compute-bound in this configuration

Compute 62.8% _
MPI 24.6% -
1/O 12.6% .

This application run was

aprun Zn 16 mmult_c.exe

Time spent running application code. High values are usually good

This 1s average, check the CPU performance section for advice

Time spent in MPI calls. High values are usually bad.

This is low; this code may benefit from a higher process count

Time spent in filesystem 1/0. High values are usually bad

This is low; check the 1/0 breakdown section for optimization advice

. A breakdown of this time and advice for investigating further is in the
section below.

As little time is spent in MPI calls, this code may also benefit from running at larger scales.

Memor F

CPU MPI Y 1/0 Threads

A breakdown of the 6.2.8% CPU time A breakdown of the 24.6% MPI time Per-process memory usage may also affect scaling A breakdown of the 12.6% 1/0 time A breakdown of how multiple threads were used
Scalar numeric ops 0.2% Time in collective calls .3% | Mean process memory usage 448 MiB Il Time in reads % Computation %

Vector numeric ops 13.4% I Time in point-to-point calls 93.7% Peak process memory usage 1.24 Gis [Time in writes 100.0% N Synchronization 0.0%

Memory accesses 80.3% 1N Effective process collective rate 0.00 bytes/s Peak node memory usage 16.0% N Effective process read rate 0.00 bytes/s Physical core utilization 7% 1R

The per-core performance is memory-bound. Use a profiler to
identify time-consuming loops and check their cache
performance.

Effective process point-to-point rate 114 M/s N

Most of the time is spent in point-to-point calls with an average
transfer rate. Using larger messages and overlapping
communication and computation may increase the effective
transfer rate.

10 Argonne Leadership Computing Facility

There is significant variation between peak and mean memory
usage. This may be a sign of workload imbalance or a memory
leak.

The peak node memory usage is very low. Running with fewer MPI
processes and more data on each process may be more efficient.

Effective process write rate 3.56 M8/s N

Most of the time is spent in write operations with a very low
effective transfer rate. This may be caused by contention for the
filesystem or inefficient access patterns. Use an /0 profiler to
investigate which write calls are affected.

101.8% R

System load

No measurable time is spent in multithreaded code.

Argonne &

NATIONAL LABORATORY

Optimize the application for Arm f not, use the

Arm MAP profiler
for optimization

A Measure all performance aspects with
A ldentify bottlenecks and rewrite some code for better performance

Exam IeS: Profiled: My_code.exe on 64 processes Started: Fri Sep 20 14:59:09 2013 Runtime: 355 Time in MPI: 45% Hide Met;
$> map -- profile aprun Zn 48 ./example e

94 - 7779 (454.6 avg }

MPI call duration (ms)
0 - 55751 (34L0avg)

CPU floating-point (%)
0o - 9 (8.2avg)

14:59:09-14:59:44 (range 34.773s): Mean Memory usage 454.6 M; Mean MPI call duration 341.0 ms; Mean CPU floating-point 8.2 %; Metrics,| Reset

* My_code.fo0] |

87 ! a
88 = module wall_excitation [...n)
100 !
101 ! MODULE EXCITATION
Profiled: clover_leaf on 32 4 nodes, 32 cores (1 per process) Sampled from: Wed Nov 9 2016 15:28:37 (UTC) for 309.1s Hide Metrics. 102 |
103 dule d t
Application activity I s
141 ! MAIN CODE
= 142 Lo oo iilooosioooooiooooooioooooo---
Iterations / s | 143 =] program Vel Vort 3D FP
aee | 144 use data_mc
0 " T 145 use wall_excitation
Grind time Ut 146 implicit none
5 147 include 'mpif.h*
148 double precision :: max_omx_dt,max_omy dt,max_omz_dt,t, time_cal
i 13 149 integer :: option,i,j,k,nn,fwent,count_max, counter,ios,next_file_at,W cnt(1l:4)
Step time 150 character*30 :: str,file_type,str_t,num_2_str
0008 . < T P, S - . s L51
ol <0.1% 152 call MPI_INIT(ierr)
15:28:37-15:33:46 (309.138s): Main thread compute 0.2 %, OpenMP 50.0 %, MP1 19,7 %, OpenMP overhead 0.1 %, Sleeping 0 | % Zoom M1 = © 153 call MPI_COMM_SIZE(MPI_COMM_WORLD,npro,ierr) -
7 hydro.190 X | Time spent on line 75 a® o J
flux_cale() [+ Breakdown of the 51.2% time spent on this line: Input/Output | Project Files Parallel Stack View I
78 AL EAvesEion] ' Executing instructions 0.0 ralclStackiVion g x
Calling other functions 100 07 ne—— Total Time MPI Function(s) on line Source Position
reset_field() B vel vort 3d fp . <u rogran Vel Vort 30
= 63.0% DS 31.4% #time integration call time_integration My_code.f90:330
= e TR T 16.9% sl 5.3% #'mod_rank_read_file... call mod_rank_read_file_all_its_own(str,nn,ios) ' Restart from last checkpoint My_code.f90:297
InputOutput | Project Files = OpenMP Stacks | OpenMP Regions | Functions 12.8% Wl 63% @ velocity_salver call velocity_solver My_code.f30:337
OpenMP Stacks o x| 1.8% B <unknown> <unknown> (ne debug info)
= . 1.5%]| 1.4% lvel vort 3d fp_ call cell identifier My_code.f30:190
Total core time MPI Overhead Function(s) on line 41% I 191 othere
clover_leal
hydro
L) [/YRAOeRI——— 15 4% <0.1% advection_module. advection
29).

11 Argonne Leadership Computing Facility Argonneb

NATIONAL LABORATORY

D
O
=

-
(@,

=

Pl

-

+ +

+ + . + + + + . + + + +
+ + + + + + + + -~ o+ + +
+ 4 . . - . . 4 =+ + =+ +

© 2018 Arm Limited q r m

+ = T .n .n T+ .n + & 5 + &

Arm DDT T The Debugger

Who had a rogue behaviour ? AL
. with Arm tools
I Merges stacks from processes and threads

C oy Identif
Where did it happen? aprobleym
I leaps to source Gather info

o Who, Where, -
How did it happen? How, Why
I Diagnostic messages Fix
I Some faults evident instantly from source
Why dld It happen’) g c:rz:sl_me(:u"em Linets) | cCurrentsmck | .
TUni gue ASmart Highl i gl [peeseneme e
i Sparklines comparing data across processes N e el 2724
T N—

13 Argonne Leadership Computing Facility

Preparing Code for Use with DDT

As with any debugger, code must be compiled with the debug
flag typically - g
It is recommended to turn off optimization flags i.e. T OO0

Leaving optimizations turned on can cause the compiler to

optimize out some variables and even functions making it
more difficult to debug

14 Argonne Leadership Computing Facility

AAAAAAAAAAAAAAAAAA

Segmentation Fault

In this example, the application crashes with a segmentation error outside of DDT.

=] Terminal - rhulguin@ryanlinux:/media’/sf VM share/Training Codes/1_ 2 cstartmpifac + — O X
File Edit Wiew T inal Tabs Help

Termrl jT .LTerm[l TJH:P

mplirun noticed ths o rocess 12 with PID 183385 on node
remotemachine exiTHd on L11nj1 11 (Segmentation Tault).

[rbulguin@ryanlinux T99]1 %

What happens when it runs under DDT?

15 Argonne Leadership Computing Facility Argonne &

AAAAAAAAAAAAAAAAAA

Segmentation Fault in DDT

DDT takes you to the exact line where Segmentation fault occurred, and you can
pause and investigate

16 Argonne Leadership Computing Facility Argonneé

AAAAAAAAAAAAAAAAAA

