

ANL/ALCF/ESP-13/10

Petascale Simulations of Turbulent Nuclear

Combustion

ALCF-2 Early Science Program Technical Report

Argonne Leadership Computing Facility

About Argonne National Laboratory

Argonne is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

under contract DE-AC02-06CH11357. The Laboratory’s main facility is outside Chicago,

at 9700 South Cass Avenue, Argonne, Illinois 60439. For information about Argonne

and its pioneering science and technology programs, see www.anl.gov.

Availability of This Report

This report is available, at no cost, at http://www.osti.gov/bridge. It is also available

on paper to the U.S. Department of Energy and its contractors, for a processing fee, from:

 U.S. Department of Energy

 Office of Scientific and Technical Information

 P.O. Box 62

 Oak Ridge, TN 37831-0062

 phone (865) 576-8401

 fax (865) 576-5728

 reports@adonis.osti.gov

Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States

Government nor any agency thereof, nor UChicago Argonne, LLC, nor any of their employees or officers, makes any warranty, express

or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,

product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific

commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply

its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of

document authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof,

Argonne National Laboratory, or UChicago Argonne, LLC.

ANL/ALCF/ESP-13/10

Petascale Simulations of Turbulent Nuclear Combustion

ALCF-2 Early Science Program Technical Report

prepared by

Christopher Daley

University of Chicago

May 7, 2013

Petascale Simulations of Turbulent Nuclear Combustion

Christopher Daley

April 3, 2013

Contents

1 Science objectives 2

2 The FLASH code 2

3 Code changes 3

3.1 Architectural . 3

3.2 Working around broken OpenMP features . 4

3.3 Creating a custom build for correctness . 4

3.4 Monitoring memory usage . 5

3.5 Working around a memory leak . 5

3.6 Adding selective profiling to FLASH evolution . 10

4 Optimizations 10

1

4.1 RTFlame . 11

4.2 DDT . 13

5 Performance 15

1 Science objectives

Type Ia (thermonuclear-powered) supernovae are important in understanding the origin of elements and are
a critical tool in cosmology. The Flash Center is carrying out large-scale, 3D simulations of two key physical
processes in Type Ia supernovae, leading to a better understanding of these explosions.

The two key physical situations for which we are carrying out large-scale 3D simulations are: (1) an
initially planar flame in a rectilinear domain with constant gravity and nearly constant density in which
turbulence due to the buoyancy of the hot ash drives the burning (which we refer to as RTFlame simula-
tions); and (2) an initially spherical or perturbed spherical flame “bubble” inside of a star in which decaying
homogeneous isotropic turbulence drives the burning (which we refer to as DDT simulations). Comparison
of the results for these two different physical situations will elucidate the ways in which buoyancy-driven tur-
bulent nuclear combustion differs from turbulent nuclear combustion in a homogeneous, isotropic turbulent
background and within a stellar environment.

Application of these results will help improve cosmological distances measured using type Ia supernovae
which will ultimately shed light on the nature of Dark Energy. Understanding dark energy ranks among the
most compelling problems in all of physical science.

2 The FLASH code

FLASH is a multiphysics, finite-volume Eulerian code containing capabilities suitable for problems in as-
trophysics, cosmology, high energy density physics and incompressible fluid dynamics. Key capabilities in
the early science simulations are Adaptive Mesh Refinement (AMR) which increases resolution in physically
important regions of the computational domain, high-order compressible hydrodynamic solvers in direction-
ally split and unsplit formulations which are able to treat non-ideal equations of state (EOS), a multipole
self-gravity solver, a flame model and a nuclear energy release model. The code is written in Fortran 90
and C and is parallelized with MPI and more recently OpenMP. It makes use of parallel I/O capabilities
provided by either HDF5 or Parallel-netcdf libraries.

2

The AMR capability is an important feature which can improve time to solution by orders of magnitude
compared to a fixed resolution uniform grid and also allows larger problems to be tackled which would not
otherwise fit in memory. At the current time, production FLASH simulations use the Paramesh package [1] to
provide a block-structured, oct-tree adaptive grid. All blocks/patches in Paramesh contain the same number
of cells consisting of internal cells and additional guard cells which store the solution from neighboring blocks.
The explicit solvers in FLASH update the solution in the internal cells of “leaf” blocks and then pass control
to Paramesh to exchange guard cells and correct fluxes. A leaf block is a block at the finest resolution in each
region of the computational domain. Massive parallelism is possible because different blocks are assigned to
different MPI tasks.

3 Code changes

We made various code changes so that FLASH early science applications would work well on Mira, the
BG/Q platform at the Argonne Leadership Computing Facility (ALCF). The major change of adding hybrid
MPI/OpenMP parallelism was part of a longer-term plan and preparation began well in advance of being
given access to a BG/Q platform (Section 3.1). Other changes were unplanned and happened after we
were given access to BG/Q, but are equally important and necessary to ensure a successful early science
program. These include changes for correctness such as altering the source code to avoid issues with the
threadprivate OpenMP directive on BG/Q (Section 3.2) and creating an unusual FLASH Makefile to
obtain expected results (Section 3.3). It also includes changes to improve resource usage such as adding
wrapper functions to monitor memory usage (Section 3.4), reducing the amount of communication in a
Paramesh initialization subroutine to minimize memory leaks happening in the messaging layer on Mira
(Section 3.5) and adding wrapper functions to selectively profile the important parts of FLASH (Section
3.6). The unplanned changes were only possible because of the long early-access period granted by the Early
Science Program (ESP).

3.1 Architectural

The FLASH computer code has until recently been a MPI-only code. The MPI-only approach works well on
BG/P, where we can run efficiently with 1 MPI rank per core (Virtual Node mode) after making a dedicated
effort to reduce the memory footprint of FLASH simulations below 512 MB per MPI rank. In contrast, the
approach of 1 MPI rank per core is generally a poor choice on BG/Q which has 4 hardware threads per core.
On BG/Q it is highly desirable to place multiple MPI ranks or software threads per core to hide memory
latency and pipeline stalls. We chose to multithread the FLASH ESP applications. This is a sensible choice
because the new capabilities in the FLASH ESP simulations add to the memory footprint, making it even
more challenging to fit in 512 MB per MPI rank and so effectively ruling out even 2 MPI ranks per core on
BG/Q.

We have added OpenMP directives to code modules in the FLASH ESP applications including the

3

hydrodynamics solver, turbulence model, flame model, EOS, and multipole solver. The directives exist at
both a coarse-grained and fine-grained granularity in the source code. In the coarse-grained case OpenMP
threads update the solution in different Paramesh blocks and in the fine-grained case OpenMP threads
update the solution in different cells from the same Paramesh block. The coarse-grained approach is hereafter
referred to as thread block list and the fine-grained approach is hereafter referred to as thread within block.
In general it is simple to assign independent work to the different threads because of stencil-based or point-
wise kernels in the code modules. The one exception is the multipole solver where we needed to create a
new moment array for each thread to avoid conflicts during frequent multipole moment updates.

3.2 Working around broken OpenMP features

We encountered problems with the threadprivate OpenMP directive on BG/Q which did not occur on
BG/P or x86 architectures with various Fortran compilers. We found that our applications would segfault
after accessing threadprivate data, but we could never reproduce the issue in a small standalone test
problem to submit a simple bug report. Our solution was to remove threadprivate directives from FLASH
by either rewriting code or removing redundant multithreading. The code that required slight rewrites were
the Helmholtz EOS and the Multipole solver. In both cases the code frequently read/wrote threadprivate
module data in the style of old Fortran codes using common block data. The rewrite involved moving this
module data to the stack or heap and, where necessary, passing this data through subroutine argument lists.
Although it took a little bit of time, these code changes benefit FLASH because it is now possible to use
nested OpenMP parallel regions for the first time, e.g. simultaneous use of thread block list and thread
within block FLASH multithreaded strategies. Nested parallelism wouldn’t have worked in the older version
of FLASH because of the rules regarding the persistence of threadprivate data [2].

3.3 Creating a custom build for correctness

The biggest issue we had is that we did not get correct FLASH solutions with driver versions before V1R1M2
on Vesta, the test and development BG/Q at ALCF. We found unphysical features in the time history of
mass, y-momentum and z-momentum integral quantities. Integral quantities represent the overall state of
the simulation and are calculated once per time step by summing over all cells in the computational domain.
We found the issues only happened when compiling all FLASH source files with either the OpenMP compiler
option or aggressive compiler optimization. The following figures show mass and directional momentum as
a function of time in 3 RTFlame test cases run on Vesta BG/Q and Intrepid BG/P. The applications are
setup with either the split or unsplit hydrodynamics solver and the parameters which are varied are the
flame speed and effective resolution.

Figure 1 shows results from an RTFlame test problem setup with the split hydrodynamics solver and run
with a flame speed of 12km/s and an effective resolution of 5123. The figure includes results from 3 different
FLASH builds on Vesta: an MPI-only build, a regular multithreaded build and a selective multithreaded
build in which only the files containing OpenMP directives are compiled with the OpenMP compilation flag.

4

It is clear that there are numerical issues when using a regular multithreaded build of FLASH with either 1
OpenMP thread or 4 OpenMP threads. It is especially concerning that the numerical issues are different in
the 1 OpenMP thread and 4 OpenMP threads case because the threads update the solution in independent
cells. Figure 2 shows results from an unsplit hydrodynamics build of FLASH but the same test problem.
Once again results are bad for a standard multithreaded build of FLASH, but they are also bad for a selective
multithreaded build of FLASH with the -qhot compilation option. Finally, Figure 3 shows the same issues
from a different RTFlame test with flame speed 9km/s and effective resolution 2563 run to a much later
time.

In Figure 1 the standard multithreaded experiments are compiled with -qsmp=omp:noauto -g -O3

-qnohot -qrealsize=8 -qnosave -c -qthreaded in this order. We specify the -qsmp option first be-
cause -qsmp (without the noopt sub-option) instructs the compiler to optimize as well as parallelize, where,
the default optimization is equivalent to -O2 -qhot in the absence of other optimization options [3]. In our
case the explicit -O3 -qnohot at the end of the compilation line should override the implicit optimizations
and make the standard multithreaded FLASH build equivalent to the selective multithreaded build. It is
therefore puzzling that results depend on the choice of multithreaded FLASH build.

The Vesta results are in good agreement with the Intrepid results when using the selective multithreaded
build with -qnohot optimization and so we build FLASH in this way for the production early science runs.
Recent testing has shown that these issues no longer exist, meaning it is now safe to use -qsmp=omp:noauto
and -qhot on all source files. Note that the original issues cannot be reproduced when using the newer
V1R1M2 driver but the same May 2012 compiler version.

3.4 Monitoring memory usage

We added wrapper functions around mallinfo [4] and Kernel GetMemorySize [5] to monitor FLASH mem-
ory usage. This was necessary because the original memory monitoring code in FLASH did not work on
BG/Q because of issues with rusage [6] on BG/Q. The new memory monitoring code has already allowed
us to drill down to a small portion of code in Paramesh which causes a memory leak to happen somewhere
in the messaging layer on BG/Q only, see Section 3.5.

3.5 Working around a memory leak

Early runs on Mira revealed an unexpected memory growth during FLASH initialization. We found similar
heap memory growth in measurements from both mallinfo and Kernel GetMemorySize on Mira BG/Q, but
surprisingly no significant memory growth on Intrepid BG/P. The memory growth happens after running a
Paramesh subroutine named find surrblks which finds the surrounding block neighbors of every Paramesh
block in the domain. It works by passing block metadata around a ring of all MPI ranks in MPI Comm world

using MPI Sendrecv replace so that each MPI rank can construct a local view of its nearest neighbors in

5

 1.38615e+28

 1.38615e+28

 1.38615e+28

 1.38615e+28

 1.38615e+28

 1.38615e+28

 1.38615e+28

 1.38615e+28

 1.38615e+28

 0 0.0001 0.0002 0.0003 0.0004 0.0005

m
as

s

time (seconds)

Intrepid 7 Aug 2012
Vesta 7 Aug 2012 - qnohot - No OpenMP

Vesta 6 Aug 2012 - qnohot - 1 OpenMP thread
Vesta 6 Aug 2012 - qnohot - 4 OpenMP threads

Vesta 7 Aug 2012 - qnohot - selective compile - 4 OpenMP threads

(a) mass

-1.6e+29

-1.4e+29

-1.2e+29

-1e+29

-8e+28

-6e+28

-4e+28

-2e+28

 0

 0 0.0001 0.0002 0.0003 0.0004 0.0005

x-
m

om
en

tu
m

time (seconds)

Intrepid 7 Aug 2012
Vesta 7 Aug 2012 - qnohot - No OpenMP

Vesta 6 Aug 2012 - qnohot - 1 OpenMP thread
Vesta 6 Aug 2012 - qnohot - 4 OpenMP threads

Vesta 7 Aug 2012 - qnohot - selective compile - 4 OpenMP threads

(b) x-momentum

-2e+22

-1.5e+22

-1e+22

-5e+21

 0

 5e+21

 1e+22

 0 0.0001 0.0002 0.0003 0.0004 0.0005

y-
m

om
en

tu
m

time (seconds)

Intrepid 7 Aug 2012
Vesta 7 Aug 2012 - qnohot - No OpenMP

Vesta 6 Aug 2012 - qnohot - 1 OpenMP thread
Vesta 6 Aug 2012 - qnohot - 4 OpenMP threads

Vesta 7 Aug 2012 - qnohot - selective compile - 4 OpenMP threads

(c) y-momentum

-1e+22

-8e+21

-6e+21

-4e+21

-2e+21

 0

 2e+21

 4e+21

 6e+21

 0 0.0001 0.0002 0.0003 0.0004 0.0005

z-
m

om
en

tu
m

time (seconds)

Intrepid 7 Aug 2012
Vesta 7 Aug 2012 - qnohot - No OpenMP

Vesta 6 Aug 2012 - qnohot - 1 OpenMP thread
Vesta 6 Aug 2012 - qnohot - 4 OpenMP threads

Vesta 7 Aug 2012 - qnohot - selective compile - 4 OpenMP threads

(d) z-momentum

Figure 1: Integrated quantities from a split hydrodynamics RTFlame test problem with flame speed 12km/s
and effective resolution 5123.

6

 1.38615e+28

 1.38615e+28

 1.38615e+28

 1.38615e+28

 1.38615e+28

 1.38615e+28

 1.38615e+28

 1.38615e+28

 1.38615e+28

 1.38615e+28

 1.38615e+28

 0 5e-05 0.0001 0.00015 0.0002 0.00025

m
as

s

time (seconds)

Intrepid 4 Aug 2012
Vesta 4 Aug 2012 - qnohot

Vesta 13 Aug 2012 - qnohot - selective compile
Vesta 13 Aug 2012 - qhot - selective compile

(a) mass

-8e+28

-7e+28

-6e+28

-5e+28

-4e+28

-3e+28

-2e+28

-1e+28

 0

 0 5e-05 0.0001 0.00015 0.0002 0.00025

x-
m

om
en

tu
m

time (seconds)

Intrepid 4 Aug 2012
Vesta 4 Aug 2012 - qnohot

Vesta 13 Aug 2012 - qnohot - selective compile
Vesta 13 Aug 2012 - qhot - selective compile

(b) x-momentum

-1.2e+21

-1e+21

-8e+20

-6e+20

-4e+20

-2e+20

 0

 2e+20

 4e+20

 0 5e-05 0.0001 0.00015 0.0002 0.00025

y-
m

om
en

tu
m

time (seconds)

Intrepid 4 Aug 2012
Vesta 4 Aug 2012 - qnohot

Vesta 13 Aug 2012 - qnohot - selective compile
Vesta 13 Aug 2012 - qhot - selective compile

(c) y-momentum

-5e+20

 0

 5e+20

 1e+21

 1.5e+21

 2e+21

 2.5e+21

 3e+21

 0 5e-05 0.0001 0.00015 0.0002 0.00025

z-
m

om
en

tu
m

time (seconds)

Intrepid 4 Aug 2012
Vesta 4 Aug 2012 - qnohot

Vesta 13 Aug 2012 - qnohot - selective compile
Vesta 13 Aug 2012 - qhot - selective compile

(d) z-momentum

Figure 2: Integrated quantities from an unsplit hydrodynamics RTFlame test problem with flame speed
12km/s and effective resolution 5123. All Vesta experiments in this figure are run with 4 OpenMP threads.

7

 1.38451e+28

 1.38451e+28

 1.38451e+28

 1.38451e+28

 1.38451e+28

 1.38451e+28

 0 0.002 0.004 0.006 0.008 0.01 0.012

m
as

s

time (seconds)

Intrepid 4 Aug 2012
Vesta 14 Aug 2012 - qnohot - selective compile

Vesta 14 Aug 2012 - qhot - selective compile

(a) mass

-2e+32

 0

 2e+32

 4e+32

 6e+32

 8e+32

 1e+33

 1.2e+33

 1.4e+33

 1.6e+33

 0 0.002 0.004 0.006 0.008 0.01 0.012

x-
m

om
en

tu
m

time (seconds)

Intrepid 4 Aug 2012
Vesta 14 Aug 2012 - qnohot - selective compile

Vesta 14 Aug 2012 - qhot - selective compile

(b) x-momentum

-1e+22

 0

 1e+22

 2e+22

 3e+22

 4e+22

 5e+22

 6e+22

 7e+22

 8e+22

 0 0.002 0.004 0.006 0.008 0.01 0.012

y-
m

om
en

tu
m

time (seconds)

Intrepid 4 Aug 2012
Vesta 14 Aug 2012 - qnohot - selective compile

Vesta 14 Aug 2012 - qhot - selective compile

(c) y-momentum

-4e+23

-3.5e+23

-3e+23

-2.5e+23

-2e+23

-1.5e+23

-1e+23

-5e+22

 0

 5e+22

 0 0.002 0.004 0.006 0.008 0.01 0.012

z-
m

om
en

tu
m

time (seconds)

Intrepid 4 Aug 2012
Vesta 14 Aug 2012 - qnohot - selective compile

Vesta 14 Aug 2012 - qhot - selective compile

(d) z-momentum

Figure 3: Integrated quantities from an unsplit hydrodynamics RTFlame test problem with flame speed
9km/s and effective resolution 2563. All Vesta experiments in this figure are run with 4 OpenMP threads.

8

the global tree. In the past we used this subroutine during initialization and whenever the grid changed
during evolution. It is obviously non-scalable. We implemented a scalable method of updating the local
view which enabled larger simulations on Intrepid BG/P [7], but the method only works during evolution
because it depends on the initial surrounding block neighbors of the top-level blocks. This means there is
still a one-time cost at initialization.

We decided to test an optimized version of this subroutine in which the block metadata is circulated in a
reduced MPI communicator consisting of only those MPI ranks that own Paramesh blocks. This idea is only
applicable at initialization since it depends on there being many more MPI ranks than Paramesh blocks.
Figure 4a shows heap memory growth for the MPI rank with the maximum memory usage after executing
the find surrblks subroutine, where, heap memory is obtained from mallinfo (m.hblkhd + m.uordblks)

[8]. We run the FLASH applications in MPI-only mode with 4 MPI ranks per node on BG/P and 16 MPI
ranks per node on BG/Q for both the original and optimized version of the code. It is clear that significant
memory growth only happens for the original version of the code on BG/Q. Unfortunately, measurements on
Mira in February 2013 show that optimized version of the code memory is now also affected by the memory
growth issue, although the optimized version does leak approximately 70 MB less than the original version.
Figure 4b compares measurements taken in September 2012 with those in February 2013.

(a) (b)

Figure 4: The increase in memory usage after running the original and optimized find surrblks subroutine.
(a) shows results from Intrepid BG/P and Mira BG/Q in September 2012, and (b) shows results from Mira
BG/Q in September 2012 and February 2013.

We ran a 4096 node FLASH experiment with the mtrace memory debugger [9] monitoring all memory
allocations that happen during the find surrblks subroutine on MPI rank 64958. This MPI rank is chosen
because it had the maximum memory usage after executing the find surrblks subroutine. The memory
leaks detected by mtrace are shown in Figure 5. These leaks are not in FLASH.

9

Memory not freed:

Address Size Caller

0x0000001f80acc020 0xe800 at /bgsys/source/srcV1R1M22012_0907_1744.17581/comm/lib/dev/mpich2/src/util/mem/handlemem.c:204

0x0000001f80ada840 0xe800 at /bgsys/source/srcV1R1M22012_0907_1744.17581/comm/lib/dev/mpich2/src/util/mem/handlemem.c:204

0x0000001f80ae9060 0xe800 at /bgsys/source/srcV1R1M22012_0907_1744.17581/comm/lib/dev/mpich2/src/util/mem/handlemem.c:204

0x0000001f83a2c740 0x30 at /bgsys/drivers/V1R1M22012_0907_1744/ppc64/toolchain/gnu/gcc-4.4.6/libstdc++-v3/libsupc++/new_op.cc:52

0x0000001f83a2c780 0xc8 at /bgsys/source/srcV1R1M22012_0907_1744.17581/comm/sys/buildtools/pami/components/memory/heap/HeapMemoryManager.h:119

0x0000001f83a2c860 0xc8 at /bgsys/source/srcV1R1M22012_0907_1744.17581/comm/sys/buildtools/pami/components/memory/heap/HeapMemoryManager.h:119

0x0000001f83a2ccc0 0x30 at /bgsys/source/srcV1R1M22012_0907_1744.17581/comm/sys/buildtools/pami/components/memory/heap/HeapMemoryManager.h:119

0x0000001f8ab21e80 0xd00 at /bgsys/source/srcV1R1M22012_0907_1744.17581/comm/sys/buildtools/pami/components/memory/heap/HeapMemoryManager.h:119

0x0000001f8ab25d40 0x28 at /bgsys/drivers/V1R1M22012_0907_1744/ppc64/toolchain/gnu/gcc-4.4.6/libstdc++-v3/libsupc++/new_op.cc:52

0x0000001f8ab29c20 0x28 at /bgsys/drivers/V1R1M22012_0907_1744/ppc64/toolchain/gnu/gcc-4.4.6/libstdc++-v3/libsupc++/new_op.cc:52

0x0000001f8ab2d380 0xc0 at /bgsys/source/srcV1R1M22012_0907_1744.17581/comm/sys/buildtools/pami/components/memory/heap/HeapMemoryManager.h:119

0x0000001f8ab2d9e0 0x8 at /bgsys/drivers/V1R1M22012_0907_1744/ppc64/toolchain/gnu/gcc-4.4.6/libstdc++-v3/libsupc++/new_op.cc:52

0x0000001f8ab2da00 0x20 at /bgsys/drivers/V1R1M22012_0907_1744/ppc64/toolchain/gnu/gcc-4.4.6/libstdc++-v3/libsupc++/new_op.cc:52

0x0000001f8ab2da40 0x8 at /bgsys/source/srcV1R1M22012_0907_1744.17581/comm/sys/buildtools/pami/components/memory/heap/HeapMemoryManager.h:119

0x0000001f8ab2da60 0x8 at /bgsys/source/srcV1R1M22012_0907_1744.17581/comm/sys/buildtools/pami/components/memory/heap/HeapMemoryManager.h:119

0x0000001f8ab2da80 0x1374 at /bgsys/source/srcV1R1M22012_0907_1744.17581/comm/sys/buildtools/pami/components/memory/heap/HeapMemoryManager.h:119

0x0000001f8ab2ee00 0x798 at /bgsys/source/srcV1R1M22012_0907_1744.17581/comm/sys/buildtools/pami/components/memory/heap/HeapMemoryManager.h:119

0x0000001f8ab2f640 0x180 at /bgsys/source/srcV1R1M22012_0907_1744.17581/comm/sys/buildtools/pami/components/memory/heap/HeapMemoryManager.h:119

0x0000001f8ab37780 0x2000 at /bgsys/source/srcV1R1M22012_0907_1744.17581/comm/lib/dev/mpich2/src/util/mem/handlemem.c:188

0x0000001f8ab397a0 0xe800 at /bgsys/source/srcV1R1M22012_0907_1744.17581/comm/lib/dev/mpich2/src/util/mem/handlemem.c:204

0x0000001f8ab4a3e0 0xe800 at /bgsys/source/srcV1R1M22012_0907_1744.17581/comm/lib/dev/mpich2/src/util/mem/handlemem.c:204

..................

253 more leaks of 0xe800 at /bgsys/source/srcV1R1M22012_0907_1744.17581/comm/lib/dev/mpich2/src/util/mem/handlemem.c:204

Figure 5: Memory leaks detected by mtrace after running the find surrblks subroutine on 4096 nodes of
Mira BG/Q in September 2012.

3.6 Adding selective profiling to FLASH evolution

The performance of FLASH on BG/Q is studied using IBM’s High Performance Computing Toolkit (HPCT)
which provides statement level profiling through vprof, hardware counter summary information and MPI
performance data. We use the HPCT API to selectively profile FLASH evolution only, i.e. we exclude
initialization, which is important for short performance studies. The initialization is always going to be
slightly expensive because the initial adaptive mesh needs to be generated from a small number of root
blocks which exist on a subset of MPI ranks. We optimized the most expensive part of initialization, see
Section 3.5, however, for short performance studies consisting of a small number of time steps the impact
of initialization can skew results. Profilers like vprof do not provide call-path profiling and so certain
subroutines in the call stack of FLASH initialization appear to be more expensive than they actually are.
The selective profiling feature allows us to run shorter performance studies and identify expensive parts of
FLASH evolution.

4 Optimizations

The early science preparation time has allowed us to increase the level of OpenMP coverage in FLASH and
make the multithreading in FLASH truly production ready. In addition to the multithreading we have found
opportunities to improve the serial, MPI and parallel I/O performance in FLASH. These improvements were
made incrementally during the early science preparation period for both RTFlame and DDT applications.
The optimizations for the RTFlame application, which are also usable by the DDT application, are discussed
in Section 4.1 and the DDT application specific optimizations are discussed in Section 4.2.

10

4.1 RTFlame

Since it is interesting to see the performance impact of each incremental change, we take the current mul-
tithreaded FLASH code and revert all serial and MPI optimizations. We successively apply the ESP opti-
mizations and then profile each transient version of the code. The baseline measurement is obtained from
a FLASH binary compiled with -O3 -qnohot. These non-aggressive compilation flags were used by Vitali
Morozov when he successfully ported FLASH to an early access BG/Q machine. The effect that each opti-
mization has on time to solution is shown in Figure 6 and the description of the optimizations follow. In the
figure blue bars indicate optimizations which are currently being used in the early science production runs
and red bars indicate optimizations which are not being used. The optimizations that are in-use reduce time
to solution by 32.6% in this test problem which is approximately a 1.5x performance improvement.

Figure 6: Time to complete 50 steps of an RTFlame test problem on Vesta BG/Q after applying each new
optimization. The simulations were run with 16 MPI ranks per node, 4 threads per MPI rank and used the
thread within block multithreading strategy.

Linking against the MASS library - libmass (1)
The baseline vprof profile shows a large number of counts in symbols log and ieee754 log which are
glibc log functions. An extremely simple optimization is to use the accelerated log functions in the IBM
Mathematical Acceleration Subsystem (MASS) library instead of those in glibc. The calls are inserted auto-
matically when compiling with aggressive optimization [3], however, aggressive flags, such as -qhot, originally
led to incorrect FLASH answers as described in Section 3.3. Linking against libmass.a explicitly allows us
to use the accelerated math functions without needing to compile FLASH with aggressive optimization.

11

Modifying the Math expressions in EOS - eosmath (2)
The next change is a contribution from Vitali Morozov which consists of faster math computations in
the Helmholtz EOS. He replaced the expression x4=plasg**(0.25e0) with x4=sqrt(sqrt(plasg)) and
inv lami=s1**(1.0e0/3.0e0) with inv lami=sqrt3(s1), where sqrt3 is a fast cube root function which
implements Halley’s method [10].

Changing the array layout in the unsplit hydrodynamics solver - UHD arrays (3)
The earlier vprof profiles show that a large amount of time is spent calling subroutines in the FLASH
subroutine hy uhd getRiemannState. This is understood and happens because the compiler must add code
to copy non-contiguous array slices into temporary contiguous arrays for the purpose of the subroutine
call. The optimization involves reordering several arrays so that the i, j, k indices are the slowest varying
dimensions. A snapshot of the vprof profiles for the original and optimized code is shown in Figure 7. On
the far left of the figure is the source line number, next to that is the number of clock ticks, where each tick
corresponds to 0.01 seconds of CPU time, and on the right is the actual source.

Improving the table lookup locality in EOS - EOS lookup (4)
The vprof profiles indicate that interpolation of table lookup data in Helmholtz EOS is expensive. This
is partly because the lookup quantities exist in separate arrays which hurts the locality. We show just the
bicubic hermite polynomial function for electron positron number densities in the before and after vprof

fragments in Figure 8. In the original code, eos xf is the electron positron number density and eos xfd,
eos xft, eos xfdt are various derivatives of this number density. Performance improvement is possible
by placing all electron positron number density quantities next to each other in a derived datatype named
eos tbl which has fields xf, xft, xfd and xfdt. Note that there are many more fields in this derived
datatype which are there to improve the access locality in other Helmholtz EOS functions.

Reducing the number of guard cell fills - Gcell fill (5)
The next optimization involves reducing the number of MPI synchronization points needed to keep guard
cells (ghost cells) updated. Frequent guard cell exchanges happen because FLASH applications consist of
multiple physics units called in sequence which update solution data according Strang operator splitting [11].
It is essential that the different physics units access current guard cell data to correctly update the solution
data and so the safe convention adopted in FLASH is that any unit which accesses guard cells is responsible
for making a call to the mesh package to update guard cells. This approach works well and avoids many bugs,
but has the side-effect that guard cells can be exchanged too often. In the case of the RTFlame application
there are guard cell exchanges in Hydrodynamics, Flame and Lagrangian Tracer Particles units as well as
a simulation specific analysis routine. This results in too many guard cell exchanges because there are no
writes to mesh data when updating Lagrangian tracer particles or performing simulation specific analysis.
Since the guard cells are still valid we can safely remove two guard cell exchange synchronization points.

Compiling with aggressive optimization - qhot (6)
The performance can be improved by using more aggressive compiler optimization, however, this originally
resulted in incorrect FLASH answers as discussed in Section 3.3.

Reordering the Paramesh data arrays - reorder (7)
The core grid data structure in Paramesh can be reordered so that the fastest varying dimension is no longer

12

688 ! ! Le f t and r i g h t Riemann s t a t e recons truc t ions
689 1003 ca l l hy uhd dataReconstOnestep&
690 (blockID , blkLimitsGC , i , j , k , dt , del ,&
.
709 s i g (1 :NDIM, 1 :HYVARINUMMAX, i , j , k) , &
710 lambda (1 :NDIM, i , j , k , 1 :HYWAVENUM) , &
711 l e i g (1 :NDIM, i , j , k , 1 :HYWAVENUM, 1 :HY VARINUM) ,&
712 r e i g (1 :NDIM, i , j , k , 1 :HY VARINUM, 1 :HYWAVENUM))
. . .

1039 ! ! ============ x−d i rec t i on ===
1040 ! YZ cross d e r i v a t i v e s for X s t a t e s
1041 838 ca l l upwindTransverseFlux&
1042 (hy transOrder , s i g (DIR Z , : , i , j −2: j +2,k) , lambda (DIR Y , i , j , k , :) , l e i g (DIR Y , i , j , k , : , :) ,&
1043 r e i g (DIR Y , i , j , k , : , :) , TransFluxYZ (:))
1044
1045 ! ZY cross d e r i v a t i v e s for X s t a t e s
1046 728 ca l l upwindTransverseFlux&
1047 (hy transOrder , s i g (DIR Y , : , i , j , k−2:k+2) , lambda (DIR Z , i , j , k , :) , l e i g (DIR Z , i , j , k , : , :) ,&
1048 r e i g (DIR Z , i , j , k , : , :) , TransFluxZY (:))

(a) Original code

688 ! ! Le f t and r i g h t Riemann s t a t e recons truc t ions
689 72 ca l l hy uhd dataReconstOnestep&
690 (blockID , blkLimitsGC , i , j , k , dt , del ,&
.
709 s i g (1 , 1 , i , j , k) , &
710 lambda (1 ,1 , i , j , k) , &
711 l e i g (1 , 1 , 1 , i , j , k) ,&
712 r e i g (1 , 1 , 1 , i , j , k))
. . .

1039 ! ! ============ x−d i rec t i on ===
1040 ! YZ cross d e r i v a t i v e s for X s t a t e s
1041 157 ca l l upwindTransverseFlux&
1042 (hy transOrder , s i g (: , DIR Z , i , j −2: j +2,k) , lambda (1 ,DIR Y , i , j , k) , l e i g (1 , 1 ,DIR Y , i , j , k) ,&
1043 r e i g (1 ,1 ,DIR Y , i , j , k) , TransFluxYZ (:))
1044
1045 ! ZY cross d e r i v a t i v e s for X s t a t e s
1046 174 ca l l upwindTransverseFlux&
1047 (hy transOrder , s i g (: , DIR Y , i , j , k−2:k+2) , lambda (1 ,DIR Z , i , j , k) , l e i g (1 , 1 ,DIR Z , i , j , k) ,&
1048 r e i g (1 ,1 ,DIR Z , i , j , k) , TransFluxZY (:))

(b) Optimized code

Figure 7: vprof profiles showing the impact of changing the array layout in the unsplit hydrodynamics
solver.

the mesh variable. This change is too experimental to be used in the FLASH early science campaign.

4.2 DDT

The test DDT simulation originally took over 2 hours to initialize on 8192 MPI ranks on Mira BG/Q.
We found that a significant amount of this time was spent reading turbulence field data from a small
HDF5 file. This is extremely puzzling because the application code made use of HDF5 parallel I/O and
requested collective I/O data transfers. We analyzed core files from a run that exceeded available wall-

13

360 h3x (i , j , w0t , w1t ,w0mt ,w1mt ,w0d ,w1d ,w0md,w1md) = &
361 (e o s x f (i , j) ∗w0d + eo s x f (i +1, j) ∗w0md &
362 + eo s x fd (i , j) ∗w1d + eos x fd (i +1, j) ∗w1md) ∗w0t &
363 + (e o s x f (i , j +1) ∗w0d + eo s x f (i +1, j +1) ∗w0md &
364 + eo s x fd (i , j +1) ∗w1d + eos x fd (i +1, j +1) ∗w1md) ∗w0mt &
365 + (e o s x f t (i , j) ∗w0d + eo s x f t (i +1, j) ∗w0md &
366 + eo s x f d t (i , j) ∗w1d + eo s x f d t (i +1, j) ∗w1md) ∗w1t &
367 + (e o s x f t (i , j +1) ∗w0d + eo s x f t (i +1, j +1) ∗w0md &
368 + eo s x f d t (i , j +1)∗w1d + eo s x f d t (i +1, j +1) ∗w1md) ∗w1mt

630 ! ! e l e c t ron + posi tron number d en s i t i e s
631 290 xne f e r = h3x (ia t , jat , &
632 s i 0 t , s i 1 t , si0mt , si1mt , &
633 s i0d , s i1d , si0md , si1md)

(a) Original code

356 h3x (i , j , w0t , w1t ,w0mt ,w1mt ,w0d ,w1d ,w0md,w1md) = &
357 (e o s t b l (i , j) % xf ∗w0d + e o s t b l (i +1, j) % xf ∗w0md &
358 + e o s t b l (i , j) % xfd ∗w1d + eo s t b l (i +1, j) % xfd ∗w1md) ∗w0t &
359 + (e o s t b l (i , j +1) % xf ∗w0d + e o s t b l (i +1, j +1) % xf ∗w0md &
360 + e o s t b l (i , j +1) % xfd ∗w1d + eo s t b l (i +1, j +1) % xfd ∗w1md) ∗w0mt &
361 + (e o s t b l (i , j) % x f t ∗w0d + eo s t b l (i +1, j) % x f t ∗w0md &
362 + e o s t b l (i , j) % xfdt ∗w1d + eo s t b l (i +1, j) % xfdt ∗w1md) ∗w1t &
363 + (e o s t b l (i , j +1) % x f t ∗w0d + eo s t b l (i +1, j +1) % x f t ∗w0md &
364 + e o s t b l (i , j +1) % xfdt ∗w1d + eo s t b l (i +1, j +1) % xfdt ∗w1md) ∗w1mt

588 ! ! e l e c t ron + posi tron number d en s i t i e s
589 82 xne f e r = h3x (ia t , jat , &
590 s i 0 t , s i 1 t , si0mt , si1mt , &
591 s i0d , s i1d , si0md , si1md)

(b) Optimized code

Figure 8: vprof profiles showing the impact of storing EOS lookup data in a derived datatype.

time and found that some MPI ranks were in the call-stack of the function MPI File read at at job end-
time. This is an independent MPI-IO function! We created wrapper functions around the HDF5 API
functions H5Pget mpio actual io mode (HDF5 >= 1.8.8) and H5Pget mpio no collective cause (HDF5
>= 1.8.10) to help understand the I/O data transfer. The functions returned H5D MPIO NO COLLECTIVE and
H5D MPIO DATATYPE CONVERSION indicating that a datatype conversion prevented a collective data transfer.
This conversion happens because the HDF5 dataset contained little-endian data (H5T IEEE F64LE) but Blue
Genes are big-endian machines. Converting the HDF5 dataset in the file to big-endian (H5T IEEE F64BE)
fixed the performance issue. Figure 9 shows how the read time is affected by the endianness of the HDF5
data and the requested data transfer mode. The results clearly show that a collective I/O transfer with
big-endian data is approximately 2 orders of magnitude faster than an independent I/O transfer. It is also
clear that the failed collective I/O transfer with little-endian data gives nearly identical performance to an
independent I/O transfer. For reference, a similar issue happens when converting from single-precision in
memory to double-precision in file [12].

A large portion of time was also spent generating the initial positions for the Lagrangian tracer particles.
We traced the slow-down to frequent calls to the random number Fortran function, where we found many
initial calls followed by a number of additional calls proportional to the MPI rank in order to give different
random numbers on each MPI rank. We fixed the performance issue by removing all the unnecessary initial
random number calls which is valid because the only requirement in this application is that the initial density

14

Figure 9: Time to read the turbulence field file on 64, 128, 256 and 512 nodes of Vesta BG/Q. The simulations
are run with 16 MPI ranks per node in MPI-only configuration.

of particles is proportional to the gas density. We did not encounter the performance issue on other platforms
because those runs used fewer MPI ranks and presumably the random number function was faster. In a brief
test we found a single call to random number takes approximately 30ns on a x86 64 platform with gcc-4.4.4

and approximately 4µs on both BG/P with xlf-11.1 and BG/Q with xlf-14.1. The 2 orders of magnitude
performance difference and greater number of MPI ranks explains why this workload was much slower on
Blue Gene platforms. Note that this issue was never seen in RTFlame simulations because, here, particles
are distributed regularly throughout the computational domain.

5 Performance

A crucial first step is to determine the most efficient way to run our applications of interest on the BG/Q
architecture. This is quite a large search space because there are many variables such as the number of MPI
ranks and OpenMP threads per node and the chosen FLASH multithreaded strategy. Figure 10 shows how
the number of MPI ranks per node and OpenMP threads per MPI rank affect the time to solution in a fixed
RTFlame problem on 128 nodes of Vesta BG/Q. The chosen RTFlame test problem makes use of AMR and
provides an effective resolution of 2563 grid points. All data points are from runs using the thread within
block multithreaded strategy because this was actually faster (evidence for this will be shown later). The
figure shows that it is faster to run FLASH applications on BG/Q in hybrid MPI+OpenMP mode than it is

15

in MPI-only mode. There are two data points of particular interest in this figure at 32 MPI ranks per node
with 2 OpenMP threads per MPI rank and 16 MPI ranks per node with 4 OpenMP threads per MPI rank.
The 32 MPI ranks per node with 2 OpenMP threads per MPI rank is the FLASH configuration which gives
the fastest time to solution, however, this is not an ideal configuration because it is tricky to fit the FLASH
early science applications in 512 MB per MPI rank. The 16 MPI ranks per node with 4 OpenMP threads
per MPI rank gives the best compromise between time to solution and memory usage. This configuration
is being used for FLASH early science production runs and is used for all performance experiments in the
remainder of this document.

Figure 10: Time to complete 30 steps of a fixed RTFlame test problem on 128 nodes of Vesta BG/Q. The
simulations were run with various numbers of MPI ranks and OpenMP threads and used the thread within
block multithreading strategy.

The biggest memory consumer in these applications is the new unsplit hydrodynamics solver which
requires approximately 2 - 2.5 times the memory of the old split hydrodynamics solver. This is not an
inefficient implementation, rather it is the need to save information for all directions. There would be no
issue with fitting in 32 MPI ranks per node if using the less accurate split hydrodynamics solver. Moving to 16
MPI ranks per node mode provides 1 GB per MPI rank and makes running FLASH much more comfortable.
Many data buffers can be sized larger to accommodate rapid adaptive mesh refinement in regions of the
domain and also congregation of many tracer particles on some MPI ranks.

Figure 11 shows how the FLASH multithreading strategy affects the strong scaling of the RTFlame
test problem used in Figure 10. The problem initially has 21,462 blocks and 18,786 leaf blocks and is run
on 512, 1024, 2048 and 4096 MPI ranks giving approximately 37, 18, 9 and 5 leaf blocks per MPI rank
respectively. We do not provide a 8192 MPI rank data point because the load balancing rules in Paramesh

16

cause 0 leaf blocks, and therefore zero work, to be placed on some of these MPI ranks even though the
average is approximately 2 leaf blocks per MPI rank. The figure shows that there is speedup with number
of MPI ranks for both threading strategies. The speedup is not ideal and a contributing factor to this is
that the grid management calls to exchange guard cells and correct fluxes are serialized. There is better
speedup for the finer-grained thread within block strategy. All performance experiments in the remainder
of this document use the thread within block strategy.

Figure 11: Relative speedup of a fixed RTFlame test problem on Vesta BG/Q. The simulations were run
on different numbers of nodes with both FLASH multithreaded strategies but were always run with 16 MPI
ranks per node and 4 OpenMP threads per MPI rank.

Figure 12 shows the strong scaling in RTFlame test problems of 2563, 5123, 10243 and 20483 effective
resolution. The high resolution runs are of particular interest because previous production campaigns on
BG/P studied configurations having 2563 and 5123 effective resolution. The largest FLASH run in this fig-
ure uses 32,768 nodes and 524,288 MPI ranks with 4 OpenMP threads per MPI rank. The strong scaling is
generally good and fits with expectation: performance gets worse when there is less work per MPI rank and
also when the resolution increases. The circled data points are from runs with the environment variable set-
tings PAMI ALLREDUCE REUSE STORAGE=N, PAMI ALLTOALL PREMALLOC=N, PAMI ALLTOALLV PREMALLOC=N and
PAMI ALLTOALLW PREMALLOC=N to reduce the memory overhead. These settings may affect the performance
but were necessary to make FLASH run despite an apparent leak of approximately 250 MB from the messag-
ing layer (see Section 3.5). Figure 13 shows weak scaling of the same data. For reference, our early science
production runs are using approximately 18 leaf blocks per MPI rank.

The performance advantage of running early science applications on BG/Q compared to BG/P can be
summarized by a node-to-node ratio which is given by the expression (Tp/Tq) × (Np/Nq), where T is run-

17

Figure 12: Strong scaling of RTFlame on Mira BG/Q for problems having 2563, 5123, 10243 and 20483

effective resolution. The simulations were run with 16 MPI ranks per node, 4 OpenMP threads per MPI
rank and used the thread within block multithreading strategy.

time, N is the number of nodes, and q and p are subscripts indicating BG/Q and BG/P respectively. We run
the fully-optimized early science applications in their most efficient configuration on both platforms, which
is MPI-only in Virtual Node mode on BG/P and Hybrid MPI+OpenMP on BG/Q, and record FLASH
evolution time as the application run-time. We obtain performance advantages of 8.9x (RTFlame) and 7.9x
(DDT) which compares well with the ALCF target of 8x to 10x. Note that the FLASH performance advantage
is actually slightly higher than shown because it is unrealistic to use the most efficient FLASH configuration
on BG/P (i.e. Virtual Node mode) due to the memory footprint of the early science simulations.

Finally, we show HPCT performance counter information from an RTFlame test problem on 128 nodes of
Vesta BG/Q in Figure 14. The FLASH application includes all optimizations up to “qhot(6)” (see Section 4.1)
and counts were collected during FLASH evolution only. The performance data shows that the integer/load-
/store/branch instructions dominate over floating point instructions (FXU=74.05% vs FPU=25.95%). The
average weighted GFLOPS per node is 5.5 GFLOPS out of a possible 204.8 GFLOPS which means that this
FLASH application is achieving 2.7% of peak floating point performance. This is quite low, however, there
are many properties of FLASH applications which contribute to such a low fraction of peak performance:
AMR introduces long-range communication and lots of control and integer code to focus floating point com-
putation where it is needed, table lookups in EOS avoid heavy floating point calculations to improve time to
solution, and tracer particles add to the total communication without increasing floating point work. The
instructions completed per cycle per core is good (0.545) and there are a high percentage of hits in the L1
data cache (92.86% on node 0). Overall this FLASH application is using the BG/Q cores relatively efficiently.

18

Figure 13: Weak scaling of RTFlame on Mira BG/Q. The number of leaf blocks per MPI rank is kept
approximately constant in problems having 2563, 5123, 10243 and 20483 effective resolution. The simulations
were run with 16 MPI ranks per node, 4 OpenMP threads per MPI rank and used the thread within block
multithreading strategy.

Acknowledgments

Thanks to Vitali Morozov for all his help throughout the project. He ported the FLASH RTFlame simulation
to BG/Q, provided support for the HPCT libraries, and helped with debugging and performance optimization
of FLASH. Thanks to Dean Townsley for providing FLASH RTFlame and DDT simulations and for answering
any questions about these simulations. Thanks also to George Jordan for explaining Flash Center science
objectives and Anshu Dubey for advising about the layout of this report. The software used in this work
was in part developed by the DOE NNSA-ASC OASCR Flash Center at the University of Chicago. This
research used resources of the Argonne Leadership Computing Facility at Argonne National Laboratory,
which is supported by the Office of Science of the U.S. Department of Energy under contract DE-AC02-
06CH11357.

19

FLASH evolution , c a l l count = 1 , avg c y c l e s = 364213522553 , max cy c l e s = 364213557651 :
−− Counter va lues f o r p r o c e s s e s in t h i s r epo r t i ng group −−−−

min−value min−rank max−value max−rank avg−value l a b e l
3 .415637 e+09 209 4.935353 e+09 1822 4.462556 e+09 Committed Load Misses
5 .638317 e+10 209 6.779761 e+10 1601 6.160317 e+10 Committed Cacheable Loads
2.744730 e+09 209 4.035232 e+09 1822 3.599715 e+09 L1p miss
1 .409032 e+11 209 1.583207 e+11 1712 1.469828 e+11 Al l XU In s t r u c t i o n Completions
3.923771 e+10 209 6.047476 e+10 1822 5.151986 e+10 Al l AXU In s t r u c t i o n Completions
5.949847 e+10 209 9.316478 e+10 1822 7.853280 e+10 FP Operat ions Group 1

Histogram of f l o a t i n g−point operat ion counts :
f l op−bin #ranks

5.949847 e+10 1
6.190321 e+10 0
6.430794 e+10 0
6.671268 e+10 74
6.911742 e+10 29
7.152215 e+10 13
7.392689 e+10 5
7.633163 e+10 1046
7.873636 e+10 240
8.114110 e+10 116
8.354584 e+10 354
8.595057 e+10 85
8.835531 e+10 56
9.076005 e+10 13
9.316478 e+10 16

Derived metr i c s f o r code block ”FLASH evolution” averaged over p roce s s (es) in the r epo r t i ng group
In s t r u c t i o n mix : FPU = 25.95 %, FXU = 74.05 %
In s t r u c t i o n s per cy c l e completed per core = 0.5450
Per cent o f max i s s u e ra t e per core = 40.36 %
Total weighted GFlops = 706.553228

(a) Summary counts over all nodes

FLASH evolution , c a l l count = 1 , avg c y c l e s = 364210026210 , max cy c l e s = 364213555879 :
−− Counter va lues summed over p r o c e s s e s on t h i s node −−−−

0 71127700508 Committed Load Misses
0 996543943304 Committed Cacheable Loads
0 57759693733 L1p miss
0 2370956187483 Al l XU In s t r u c t i o n Completions
0 827216441627 Al l AXU In s t r u c t i o n Completions
0 1261426933713 FP Operat ions Group 1

−− L2 counter s (shared f o r the node) −−−−−−−−−−−−−−−−−

100 569692088884 L2 Hits
100 7121203216 L2 Misses
100 8169110557 L2 l i n e s loaded from main memory
100 6253069690 L2 l i n e s s to r ed to main memory

Derived metr i c s f o r code block ”FLASH evolution” averaged over p roce s s (es) on node <0 ,0 ,0 ,0 ,0> :
I n s t r u c t i o n mix : FPU = 25.87 %, FXU = 74.13 %
In s t r u c t i o n s per cy c l e completed per core = 0.5488
Per cent o f max i s s u e ra t e per core = 40.69 %
Total weighted GFlops f o r t h i s node = 5.541
Loads that h i t in L1 d−cache = 92.86 %

L1P bu f f e r = 1 .34 %
L2 cache = 5.08 %
DDR = 0.71 %

DDR t r a f f i c f o r the node : ld = 2 .871 , s t = 2 .198 , t o t a l = 5.069 (Bytes / cy c l e)

(b) Counts on node 0

Figure 14: Performance counter data from an RTFlame test problem on 128 nodes of Vesta BG/Q. The
simulation was run with 16 MPI ranks per node, 4 OpenMP threads per MPI rank and used the thread
within block multithreaded strategy. Counts were only collected during FLASH evolution.

20

References

[1] P. MacNeice, K. M. Olson, C. Mobarry, R. de Fainchtein, and C. Packer. PARAMESH: A parallel
adaptive mesh refinement community toolkit. Computer Physics Communications, 126:330–354, April
2000.

[2] OpenMP Architecture Review Board. OpenMP application program interface version 3.1. http://www.
openmp.org/mp-documents/OpenMP3.1.pdf, July 2011.

[3] IBM. IBM XL Fortran for Blue Gene/Q, V14.1. Optimization and Programming Guide. IBM, 2012.

[4] Statistics for memory allocation with malloc. http://www.gnu.org/software/libc/manual/html_

node/Statistics-of-Malloc.html, February 2013.

[5] V. Morozov. Blue Gene/Q Tuning Early Experience. http://www.alcf.anl.gov/sites/www.alcf.

anl.gov/files/morozov-bgqtuning-early.pdf, March 2012. Slides presented at the ESP March
Workshop ”Code for Q”, Argonne National Laboratory.

[6] The GNU C library. Resource usage. http://www.gnu.org/software/libc/manual/html_node/

Resource-Usage.html, February 2013.

[7] A. Dubey, A.C. Calder, C. Daley, R.T. Fisher, C. Graziani, G.C. Jordan, D.Q. Lamb, L.B. Reid, D.M.
Townsley, and K. Weide. Pragmatic optimizations for better scientific utilization of large supercomput-
ers. International Journal of High Performance Computing Applications, to appear. Published online
21 November 2012 http://hpc.sagepub.com/content/early/2012/11/20/1094342012464404.

[8] Determining memory use. https://www.alcf.anl.gov/resource-guides/determining-memory-use,
February 2013.

[9] Allocation debugging. How to install the tracing functionality. http://www.gnu.org/software/libc/
manual/html_node/Tracing-malloc.html#Tracing-malloc, February 2013.

[10] L. Killough. Optimizing Single-Node Performance on BlueGene. http://press.mcs.anl.gov/

gswjanuary12/files/2012/01/Optimizing-Single-Node-Performance-on-BlueGene.pdf, January
2012. Slides presented at the ALCF Winter Workshop, Argonne National Laboratory.

[11] The Flash Center for Computational Science at the University of Chicago. FLASH Users Guide. Version
4.0., September 2012.

[12] R. Latham, C. Daley, W.K. Liao, K. Gao, R. Ross, A. Dubey, and A. Choudhary. A case study
for scientific I/O: improving the FLASH astrophysics code. Computational Science and Discovery,
5(1):015001, 2012.

21

http://www.openmp.org/mp-documents/OpenMP3.1.pdf
http://www.openmp.org/mp-documents/OpenMP3.1.pdf
http://www.gnu.org/software/libc/manual/html_node/Statistics-of-Malloc.html
http://www.gnu.org/software/libc/manual/html_node/Statistics-of-Malloc.html
http://www.alcf.anl.gov/sites/www.alcf.anl.gov/files/morozov-bgqtuning-early.pdf
http://www.alcf.anl.gov/sites/www.alcf.anl.gov/files/morozov-bgqtuning-early.pdf
http://www.gnu.org/software/libc/manual/html_node/Resource-Usage.html
http://www.gnu.org/software/libc/manual/html_node/Resource-Usage.html
http://hpc.sagepub.com/content/early/2012/11/20/1094342012464404
https://www.alcf.anl.gov/resource-guides/determining-memory-use
http://www.gnu.org/software/libc/manual/html_node/Tracing-malloc.html#Tracing-malloc
http://www.gnu.org/software/libc/manual/html_node/Tracing-malloc.html#Tracing-malloc
http://press.mcs.anl.gov/gswjanuary12/files/2012/01/Optimizing-Single-Node-Performance-on-BlueGene.pdf
http://press.mcs.anl.gov/gswjanuary12/files/2012/01/Optimizing-Single-Node-Performance-on-BlueGene.pdf

Argonne National Laboratory is a U.S. Department of Energy

laboratory managed by UChicago Argonne, LLC

Argonne Leadership Computing Facility
Argonne National Laboratory

9700 South Cass Avenue, Bldg. 240

Argonne, IL 60439

www.anl.gov

	1 Science objectives
	2 The FLASH code
	3 Code changes
	3.1 Architectural
	3.2 Working around broken OpenMP features
	3.3 Creating a custom build for correctness
	3.4 Monitoring memory usage
	3.5 Working around a memory leak
	3.6 Adding selective profiling to FLASH evolution

	4 Optimizations
	4.1 RTFlame
	4.2 DDT

	5 Performance

