

ANL/ALCF/ESP-13/15

Global Simulation of Plasma Microturbulence at the

Petascale & Beyond

(Optimizing the GTC Code for Blue Gene/Q)

ALCF-2 Early Science Program Technical Report

Argonne Leadership Computing Facility

About Argonne National Laboratory

Argonne is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

under contract DE-AC02-06CH11357. The Laboratory’s main facility is outside Chicago,

at 9700 South Cass Avenue, Argonne, Illinois 60439. For information about Argonne

and its pioneering science and technology programs, see www.anl.gov.

Availability of This Report

This report is available, at no cost, at http://www.osti.gov/bridge. It is also available

on paper to the U.S. Department of Energy and its contractors, for a processing fee, from:

 U.S. Department of Energy

 Office of Scientific and Technical Information

 P.O. Box 62

 Oak Ridge, TN 37831-0062

 phone (865) 576-8401

 fax (865) 576-5728

 reports@adonis.osti.gov

Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States

Government nor any agency thereof, nor UChicago Argonne, LLC, nor any of their employees or officers, makes any warranty, express

or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,

product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific

commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply

its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of

document authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof,

Argonne National Laboratory, or UChicago Argonne, LLC.

ANL/ALCF/ESP-13/15

Global Simulation of Plasma Microturbulence at the Petascale &

Beyond

(Optimizing the GTC Code for Blue Gene/Q)

ALCF-2 Early Science Program Technical Report

prepared by

William Tang1,2, Stephane Ethier1, Bei Wang2, Timothy Williams3, Khaled Ibrahim4,

Kamesh Madduri5,4, Samuel Williams4, and Leonid Oliker4
1Princeton Plasma Physics Laboratory

2Princeton University

3Argonne Leadership Computing Facility, Argonne National Laboratory
4Lawrence Berkeley National Laboratory
5The Pennsylvania State University

May 7, 2013

Optimizing the GTC Code for Blue Gene/Q

ALCF-2 Early Science Program Technical Report

William Tang,1, 2 Stephane Ethier,1 Bei Wang,2 Timothy Williams,3

Khaled Ibrahim,4 Kamesh Madduri,5, 4 Samuel Williams,4 and Leonid Oliker4

1Princeton Plasma Physics Laboratory
2Princeton University

3Argonne Leadership Computing Facility, ANL
4Lawrence Berkeley National Laboratory

5The Pennsylvania State University

I. SCIENCE

Figure 1 shows, schematically, the tokamak device, whose intent is to magnetically confine
a high-temperature plasma and produce energy through nuclear fusion. The confined plasma,
shown in pink, is toroidal in shape. For several decades now, scientists have been studying and
improving these devices, working toward a successful fusion ignition—creating a burning plasma—
and sustaining it to generate more power than it took to create it. The next big experimental step
will be the International Thermonuclear Experimental Reactor, a twenty billion dollar burning
plasma device under construction in France, involving the partnership of seven governments.1 The
human in Figure 2 illustrates the scale of ITER.

The magnetic field in the tokamak confines the plasma—ions, electrons, and their heat and
momentum. Various kinds of instabilities in the plasma work against that confinement. Turbulent
fluctuations can cause transport of particles and energy across the magnetic field lines, toward
the outside of the plasma, where it is lost. Loss of plasma and energy, of course, works against
confinement and successful fusion. This microturbulence is something the fusion community needs
to understand and control.

In past and present tokamaks, measurements have shown that the transport of energy and parti-
cles caused by microturbulence depends on the size of the tokamak—larger means more transport.
This is Bohm scaling2. However, theoretical arguments predict that beyond a certain size, which
ITER will be beyond, the size dependence goes away, leading to relatively smaller turbulent losses
and thus better confinement. This is GyroBohm scaling3. The key target of this ESP project is to
simulate microturbulent transport for devices of different sizes up through ITER size, and validate
and understand GyroBohm scaling.

II. NUMERICAL METHOD

To study low-frequency microturbulence for magnetically confined plasmas, we start from the
Vlasov equation in six-dimensional phase space for each particle species. In the gyrokinetic
approach4, by removing the high frequency motion of the particles that is not important to turbu-
lent transport, we reduce the six-dimensional equation to a five-dimensional Vlasov equation:

dfα

dt
=

∂fα

∂t
+

dR

dt
·
∂fα

∂R
+

dv‖

dt

∂fα

∂v‖
= 0, (1)

where fα(R, v‖, µ) is the five-dimensional phase space distribution function for species α in the
gyrocenter coordinates R and v‖ is the velocity parallel to the magnetic field.

1

FIG. 1: Tokamak. (Source: EFDA-JET)

FIG. 2: ITER. Human figure toward lower right corner indicates scale. (Image credit: c© ITER
Organization, http://www.iter.org/)

Since plasmas are charged, we must also solve the relevant electromagnetic field equations. In
the electrostatic gyrokinetic regime we’re studying, the full Maxwell equations reduces to a single
gyrokinetic Poisson equation.

In this project, we solve gyrokinetic Vlasov-Poisson system of equations using the Particle-In-
Cell (PIC) approach.4 Put simply, the ions are represented by a set of particles having the shape of

2

charged rings perpendicular to the magnetic field, having radius equal to the ion gyroradius. The
electric field is represented on a grid, through which the particles move continuously. The field
is interpolated from the grid to each of four points on the gyro-orbit, which then is averaged to
get the force that moves the particles (the particle push). Given the position of the particles, the
electric charge of each particle is deposited onto a charge density array defined on the grid (one
particle contributes to a small neighborhood of grid points around each of the 4 gyro-orbit points
on the ring. Given the charge density on the grid, the nonlinear gyrokinetic Poisson equation is
solved using a custom solver. The gradient of this potential field gives the electric field, which is
then used to push the particles again, and so on. Figure 3 illustrates the process for a time step. In
the work discussed here, the electrons in the plasma are treated as adiabatic, meaning they follow
a simple Boltzmann response function (i.e., not treated as particles).

FIG. 3: Timestep elements for self-consistent evolution of plasma particles and electrostatic field. Push:
interpolate electric field to positions of 4 gyro-orbit points of particles, use these to compute force and
move particles. Shift: Send and receive particles that move between separate subdomains in the parallel
decomposition of particles and fields. Charge: for 4 points on gyro-orbit of each particle, accumulate
fractional charge density onto a neighborhood of grid points. Smooth: Smooth charge density and potential
with a filter on the grid. Poisson: Solve gyrokinetic Poisson equation to get potential on the grid.

The grid geometry we use approximates the toroidal cross section as circular. Grid lines the long
way around the torus follow magnetic field lines, which wind around helically. Figure 4 illustrates
the coordinates, geometry, and several particles. The particles are rings with the 4 gyro-orbit
points indicated, along with the neighborhood of grid points used to accumulate the charge density
from or interpolate the force (electric field) from those 4 points. Not shown is the interpolation
along the zeta direction. Psi is the radial coordinate, theta is the poloidal angle, and zeta is the
toroidal coordinate.

III. CODES

The implementations we discuss here derive from the Gyrokinetic Toroidal Code (GTC)5. The
variants we use and compare are two implementations of GTC-P, an electrostatic code with a
circular cross section. Most newer tokamaks, and ITER, have D-shaped plasma cross sections, but

3

FIG. 4: An illustration of the 3D toroidal grid (top), a cross section (lower left), and the 4-point gyrokinetic
averaging scheme employed in the charge deposition and push steps (lower right).

the effects of that geometry are not necessary to the basic physics we’re investigating. When the
ESP project started, until recently, we used a Fortran implementation, which we’ll call GTC-P
Fortran. More recently, we have moved to a new, from-scratch implementation in C, called GTC-P
C.

IV. PARALLELIZATION

The original GTC code used 3 levels of parallelization:

1. One-dimensional domain decomposition in the toroidal (zeta) direction. Because of the
physics of the plasma in the regime of interest, and because of the efficiency of the magnetic-
field-line-following grid, we need only 64 grid zones toroidally, even for the largest problems
we run. This limits parallelism in this dimension to 64; the MPI ranks are divided into a
maximum of 64 subsets, one per toroidal subdomain.

2. Particle decomposition. Within each toroidal subdomain, the particles in that domain are
distributed among the MPI ranks. Each rank maintains its own copy of the whole sub grid
for the subdomain—all the poloidal and radial grid points, usually on two poloidal planes

4

bounding one toroidal grid zone. For the charge deposition from particle gyro-orbit points
to the grid, it is necessary to use an MPI Allreduce to sum up the contributions from all
the MPI ranks’ local grid copies.

3. Thread parallelism. For particle and grid operations within local toroidal subdomains, we
use OpenMP to parallelize relevant loops over both particles and grid points.

More recently, we added an additional level of MPI parallelism: radial decomposition. Radial
domain decomposition begins by partitioning a poloidal plane to non-overlapping domains with
equal area. Assuming particle density is uniform, this partitioning divides all particles in one
toroidal section equally across multiple processes. Next, the non-overlapping domain is extended
to line up with the mesh boundary in the radial direction (shown as valid grid in Figure 5). Finally,
the valid grid is extended on each side with ghost cells accounting for charge deposition with 4-point
approximation (shown as local grid in Figure 5). In general, 3 to 8 ghost cells are sufficient. The
2D domain decomposition is implemented with MPI using two different communicators: a toroidal
communicator and a radial communicator. The particles move between domains with nearest-
neighbor communication in a circular fashion. Since the number of particles moving in the radial
dimension is much smaller than the particles moving in the toroidal dimension, radial partitioning
results in minimal communication. Within radial subdomains, we still allow partitioning of particles
among more than one MPI rank.

max. gyroradius

valid
 grid

local grid

4 pts of charge

deposition of a particle

theta

psi

FIG. 5: A geometric radial partitioning with extended ghost zones. The valid region contains guiding centers
for the MPI rank owning the radial subdomain. The full local region includes a number of ghost zones based
on the maximum gyroradius of the particles (constant, typically 8, and the same for all radial subdomains).

5

V. KERNELS

Figure 3 shows 6 basic kernels in GTC-P, which can be grouped into 4 groups:

Charge Deposit charge from the 4 gyro-orbit points for each particle onto a neighborhood of grid
points (neighborhoods are up to 32 grid points for each gyro-orbit point). This scatter-add
operation must be managed when multiple ranks and/or threads are updating the same grid
zones—either through using locks or using separate local copies of the grid, which then must
be summed across ranks and/or threads.

Poisson/Field/Smooth Solve the gyrokinetic Poisson equation, compute the electric field, and
smooth the charge density and potential fields. These are all grid-only operations. Because
of the physics modeled (Debye shielding term much smaller than ion polarization term), it is
sufficient to solve only independent 2D Poisson equations, one for each poloidal-radial plane.

Push Gather the force at each gyro-orbit point for each particle and use it to compute the force
and advance the particle’s phase space coordinates. The gather operation is the inverse of
the scatter-add operation in the charge kernel. Here, we’re only reading from grid arrays,
so there is no locking or synchronization needed.

Shift As particles (that is, their gyro-orbit centers) move through space, they will cross subdomain
boundaries into regions owned by other MPI ranks. they must be buffered and sent to the
appropriate neighboring rank.

VI. OPTIMIZATIONS

Since the beginning of the Early Science Program, we have worked on two basic types of
optimization of GTC-P in preparation for running on Mira:

1. Generic optimizations in single-core computations, parallel decomposition and message pass-
ing, and OpenMP threading.

2. IBM Blue Gene/Q specific optimizations

Here we will briefly touch on the generic optimizations, then discuss the BG/Q-specific opti-
mizations. The full set of optimizations have been made only in the C version, GTC-P C, though
any of them could also have been made to GTC-P Fortran. We discuss the performance impact of
the optimizations in section VII.

A. Generic Optimizations

GTC-P Fortran used arrays of structures for particle data (each element stores all data quan-
tities carried by a particle, including extras to handle two time levels in time integration). One
optimization in GTC-P C is to change this to structures of arrays, to improve data locality of
access when streaming through all the particles. This optimization benefits SIMD architectures in
generally, including BG/Q and also GPGPU machines.6–8

As discussed in section III, GTC-P Fortran required each MPI rank to store a complete copy of
the 2D radial-poloidal grid. The radial decomposition discussed there means that storage can be

6

reduced as needed for optimal performance on a given architecture by tuning the radial decompo-
sition.

To increase data locality and improve cache hits on grid accesses for the charge and push
kernels, we periodically sort particles into radial bins. This tends to improve cache reuse for data
loaded from the grid arrays. The binning algorithm is multithreaded.6 Locality can further be
improved by accounting for the 4 gyro-orbit points associated with each particle (charged ring).
We bin the coordinates of the gyro-orbit points radially, using a preliminary pass through the
particles to store the 4 points. The second pass through all these binned points only touches field
grid points in a band of narrow width radially; compared to a gyro-radius-wide band of points if
you are going through all 4 points for a single particle. In this way, data locality and cache reuse
is improved. We use this two-level binning for the charge kernel; it doesn’t improve performance
on present-day machines in the push kernel.

We have also used loop-fusion to improve computational intensity. We fused OpenMP loops
where possible to minimize thread creation overhead. We flattened 2D and 3D grid arrays to 1D
arrays. Additionally, we pre-allocated memory buffers that are used for temporary storage in every
time step.

Grid-based subroutines in GTC-P included nested loops with psi is the outer loop and theta
is the inner. Near the center radially, the number of theta grid points changes significantly (as a
percentage) with each increasing radial grid level. To mitigate load imbalance in multithreading
these loop nests, we flattened the nest into a single loop over all grid points. Finally, GTC-P Fortran
used version 2.3.3 of the PETSc library9–11, which is not multithreaded, to solve the gyrokinetic
Poisson equation; we replaced this with a multithreaded, hand-coded solver in GTC-P C. (N.B.:
Newer versions of PETSc have added thread support.)

B. Blue Gene/Q Specific Optimizations

Many of the generic optimizations discussed previously led to improvement in GTC-P perfor-
mance on Mira. The general goal was scaling up to much higher levels of concurrency, which is
what we got with Mira, both in total number of cores (∼ 750 million)and in total number of threads
(4 hardware threads per core).

One BG/Q optimization that is important when running on large numbers of nodes is the
mapping of MPI ranks onto the physical nodes and cores on the machine. IBM defines a naming
convention for the communication dimensions in the torus: ”ABCDET” means that MPI ranks
are mapper to the system in a particular order: Each letter is associated with a dimension in the
5D torus (with ”T” being an index across the MPI ranks (processes) in a single node).12 The last
dimension (T in this example) is fastest varying, so, if running with one MPI rank per node:

• MPI rank 0 is assigned to coordinates 〈0, 0, 0, 0, 0, 0〉

• MPI rank 1 is assigned to coordinates 〈0, 0, 0, 0, 1, 0〉

• MPI rank 2 is assigned to coordinates 〈0, 0, 0, 0, 2, 0〉

•

The second-to-last dimension (E in this example) is the next-fastest varying, and so on. The high-
est value for each dimension depends on the number of nodes in the partition you’re using within
the machine. For anything 512 nodes or larger, you have your own isolated partition on BG/Q,
generally itself a torus. The optimized GTC-P C code uses a two-dimensional topology for point
to point communication, where the first dimension (toroidal dimension) has fixed dimensionality

7

64. On a BG/Q system with 5D torus network, we can thus group two or three torus dimensions
together to match 64 for an optimized placement layout by setting the environment variable RUN-
JOB MAPPING. Table I shows some examples of configurations and groupings when we run the
application with one process per node. This explicit process mapping leads up to a 45% communi-
cation improvement for particle shift in the toroidal dimension using 8 racks (8192 nodes) of Mira.

Configuration Torus Shape Grouping

256 nodes (1/4 rack) 4 2 4 4 2 ABCE×D×T

512 nodes (1/2 rack) 4 4 4 4 2 ABC×DE×T (default)

1024 nodes (1 rack) 4 4 4 8 2 ABC×DE×T (default)

2048 nodes (2 racks) 4 4 4 16 2 ABC×DE×T (default)

4096 nodes (4 racks) 4 4 8 16 2 ACE×BD×T

8192 nodes (8 racks) 4 4 16 16 2 AC×BDE×T

TABLE I: Process Mapping on BG/Q. Not shown in the torus shape are the on-node“T” dimensions, whose
maximal value depends on the chosen number of MPI ranks per node.

As BG/Q is a highly multithreaded architecture (up to 64 OpenMP threads per MPI rank), effi-
cient use of OpenMP is essential for attaining high performance. Some of the generic optimizations
in section VIA, especially those for grid-based calculations, improved the OpenMP performance
and scalability. It is very important to be aware of environment variables controlling thread behav-
ior on BG/Q. The settings BG SMP FAST WAKEUP=YES and OMP WAIT POLICY=active
make threads use an atomic-based spin barrier instead of a slower sleep-based approach. For some
of the grid-based routines, these settings resulted in a 10× speedup when using 64 threads per MPI
rank.

VII. PERFORMANCE

Here we present some performance measurements on a set of different problem sizes. These
are the four problem sizes used to study the Bohm-to-GyroBohm scaling transition discussed in
section I. The parameters are shown in Table II; the number of particles is based on the micell
parameter, which is the number of particles per grid cell. Grid sizes A and B correspond to the
majority of existing tokamaks in the world, C corresponds to the JET tokamak, the largest device
currently in operation [10], and D corresponds to to ITER.

Grid Size A B C D

mpsi 90 180 360 720

mthetamax 640 1280 2560 5120

mgrid (grid points per plane) 32449 128893 513785 2051567

chargei grid (MB) 0.5 1.97 7.84 31.30

evector grid (MB) 1.49 5.90 23.52 93.91

Total particles micell=100 (GB) 0.29 1.16 4.64 18.56

TABLE II: The GTC numerical settings for different plasma sizes. The grid and particle memory requirement
are for one toroidal domain only. A simulation typically consists of 64 toroidal domains. mpsi andmthetamax
are the number of grid points in the radial (psi) and poloidal (theta) coordinates.

8

A. Strong Scaling

First, we consider strong scaling—running a fixed problem size on an increasing sequence of
compute nodes. We denote the problem as D100. The problem size is D (ITER size), and we use the
typical production setting of 100 particles per cell. (This is typical when running adelta-f simulation,
where the particles represent only the difference of the phase space distribution with respect to a
constant Maxwellian background distribution.) In the toroidal direction, we use ntoroidal=64 grid
cells. This is distributed among 64 sets of MPI ranks, so each toroidal subdomain has two poloidal
planes having 2 million grid points each. This global simulation is 130 million grid points and 13
billion particles.

For the first strong scaling test, we increase the number of radial partitions from 32 to 512. We
run on Mira with 4 MPI ranks per node and 16 OpenMP threads per rank; the simulations scale
from 512 to 8192 nodes (8192 to 131,072 cores). Table III shows the results. The GTC-P C code
uses the optimizations detailed in section VI, which combine to give a substantial improvement in
overall runtime (∼ 2× on 32768 nodes) and a substantial improvement in parallel efficiency. Note
that these runs did not use particle decomposition; this allows strong scaling up to even larger
node counts.

MPI Radial GTC-P Parallel GTC-P Parallel Speedup

Ranks Partitions Fortran Efficiency C Efficiency

2048 32 9.282 1.0 5.275 1.0 1.76

4096 64 4.685 0.99 2.651 0.99 1.76

8192 128 2.536 0.92 1.373 0.96 1.85

16384 256 1.453 0.80 0.726 0.91 2.00

32768 512 0.873 0.60 0.414 0.80 2.21

TABLE III: Wall-clock time (sec) for one time step with strong scaling in radial domain decomposi-
tion for D100 using GTC-P Fortran and GTC-P C. In all experiments, we use 4 processes/node and 16
threads/process. GTC-P C attains a 2× speedup due to our optimizations.

For the second strong scaling test, we consider scaling with respect to the number of OpenMP
threads per MPI rank. Table IV shows the results. We hold the number of MPI ranks (processes)
constant at 32768. As we increase from 2048 nodes to 32768 nodes by doubling, the amount of
available hardware thread concurrency doubles, since we’re reducing freeing up more cores. With
perfect thread scaling, the run times would halve each step. For the D100 problem, the parallel
efficiency at the largest number of nodes has dropped to 59%.

D100: 13 Billion particles, 32768 total processes, with 400556 particles per process

Nodes Processes×Threads Charge Push Shift t Shift r Binning Poisson Field Smooth Total Eff.

2048 16×4 0.6691 0.4569 0.3073 0.0326 0.0602 0.0197 0.0050 0.0069 1.558 1.0

4096 8×8 0.3397 0.2313 0.1536 0.0169 0.0340 0.0078 0.0027 0.0047 0.791 0.99

8192 4×16 0.1822 0.1178 0.0779 0.0094 0.0167 0.0044 0.0021 0.0039 0.414 0.94

16384 2×32 0.1110 0.0591 0.0722 0.0063 0.0087 0.0033 0.0022 0.0039 0.267 0.73

32768 1×64 0.0709 0.0298 0.0487 0.0050 0.0039 0.0022 0.0018 0.0035 0.166 0.59

TABLE IV: Strong scaling of threads per process for D100 using GTC-P C on Mira. The time is the
wall-clock time (sec) for one time step. We use 64-way toroidal and 512-way radial partitioning.

For the third strong scaling test, we look at how the optimizations made in GTC-P C improve
fine-grained parallelism with respect to GTC-P Fortran. Table V breaks down the relative perfor-

9

mance improvement by numerical kernel. The problem and set of runs are the same as in Table
IV. The biggest speedups are in the grid-based kernels, because of the loop flattening and other
optimizations in section VI. The speedups in charge and push are mainly because of binning,
and avoiding synchronization in charge. Both the Fortran and C codes employ the private grid
replication strategy on a per thread basis for charge deposition. However, GTC-P Fortran uses a
critical section to merge charges from all copies private of threads. This serial portion of
the code can be easily avoided by carefully reorganizing the summation order.

Nodes 2048 4096 8192 16384 32768

Thread/Process 4 8 16 32 64

charge 1.14× 2.06× 1.95× 3.52× 8.80×

push 1.71× 1.71× 1.69× 1.72× 1.70×

shift 1.37× 2.05× 2.23× 2.23× 2.85×

poisson 6.84× 12.05× 13.57× 13.55× 16.45×

field 41.02× 35.74× 28.43× 20.32× 20.11×

smooth 28.87× 23.87× 21.72× 16.46× 16.40×

overall speedup 1.43× 1.78× 2.11× 2.87× 5.56×

TABLE V: Speedup (GTC-P C vs GTC-P Fortran) on D100 problem by kernels with different threads per
process. The total processes (32768), the number of particles in each process (400556) and the number of
radial partitions (512) are fixed. Shift includes shift t, shift r and binning in Table IV.

B. Weak Scaling

Next, we consider weak scaling—running a sequence of problem size on an increasing sequence of
compute nodes, keeping the amount of work per node constant. We use the four problem sizes used
to study the Bohm-to-GyroBohm scaling transition discussed in section I. We use 100 particles
per cell, one MPI rank per node, and 64 threads per rank.

The parallelism in GTC is denoted as three parameters: the number of toroidal partitions
(ntoroidal), the number of radial partitions (nradiald), and the number of particle partitions in
one spatial subdomain (npe radiald=npartdom/nradiald, where npartdom is the total number of
particle partitions in one toroidal partition). Table VI shows the settings for the weak scaling
study. Figure 6 shows the results, comparing GTC-P Fortran and GTC-P C. Some efficiency loss
is still seen for GTC-P C, but keep in mind that here we are using 2/3 of Mira: 524,288 cores.

Problem Size Nodes ntoroidal npartdom nradiald npe radialid

A 512 64 8 1 8

B 2048 64 32 1 32

C 8192 64 128 1 128

D 32768 64 512 1 512

TABLE VI: Parameters for weak scaling study

Acknowledgments

Dr. Wang was supported by the NSF OCI-1128080/G8 Initiative: G8 Research Councils Initiative on
Multilateral Research Funding. Authors from Princeton Plasma Physics Laboratory were by the DOE

10

 0

 0.2

 0.4

 0.6

 0.8

 1

 512 2048 8192 32768

w
a
ll
 c

lo
c
k
 t

im
e
 p

e
r

s
te

p

nodes

GTC-P Fortran
GTC-P C

A B C
D

FIG. 6: Weak scaling from A to D size plasmas using GTC-P Fortran and GTC-P C on Mira.

contract DE-AC02-09CH11466. Authors from Lawrence Berkeley National Laboratory were supported by
the DOE Office of Advanced Scientific Computing Research under contract number DE-AC02-05CH11231.
Dr. T. Williams was supported by the DOE contract number DE-AC02-06CH11357. This research used
resources of the Argonne Leadership Computing Facility, which is supported by the Office of Science of
the U.S. Department of Energy under contract DE-AC02-06CH11357. This research used resources of the
National Energy Research Scientific Computing Center, which is supported by the Office of Science of the
U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

1 Y. Shimomura, R. Aymar, V. Chuyanov, M. Huguet, R. Parker, and ITER Joint Central Team. Iter
overview. Nuclear Fusion, 39(9Y):1295, 1999.

2 Andrew Guthrie and Raymond Kornelious Wakerling. The characteristics of electrical discharges in
magnetic fields, volume 5. McGraw-Hill, 1949.

3 G. Manfredi and M. Ottaviani. Gyro-Bohm Scaling of Ion Thermal Transport from Global Numerical
Simulations of Ion-Temperature-Gradient-Driven Turbulence. Physical Review Letters, 79(21):4190–4193,
November 1997.

4 W.W Lee. Gyrokinetic particle simulation model. Journal of Computational Physics, 72(1):243–269,
September 1987.

5 Z. Lin. Turbulent Transport Reduction by Zonal Flows: Massively Parallel Simulations. Science,
281(5384):1835–1837, September 1998.

6 Kamesh Madduri, Eun-Jin Im, Khaled Z. Ibrahim, Samuel Williams, Stphane Ethier, and Leonid Oliker.
Gyrokinetic particle-in-cell optimization on emerging multi- and manycore platforms. Parallel Comput-
ing, 37(9):501 – 520, 2011.

7 Kamesh Madduri, Khaled Z. Ibrahim, Samuel Williams, Eun-Jin Im, Stephane Ethier, John Shalf, and
Leonid Oliker. Gyrokinetic toroidal simulations on leading multi- and manycore hpc systems. In Pro-
ceedings of 2011 International Conference for High Performance Computing, Networking, Storage and
Analysis, SC ’11, pages 23:1–23:12, New York, NY, USA, 2011. ACM.

8 Kamesh Madduri, Samuel Williams, Stéphane Ethier, Leonid Oliker, John Shalf, Erich Strohmaier,
and Katherine Yelicky. Memory-efficient optimization of Gyrokinetic particle-to-grid interpolation for
multicore processors. In Proceedings of the Conference on High Performance Computing Networking,
Storage and Analysis - SC ’09, SC ’09, pages 48:1–48:12, New York, New York, USA, November 2009.

11

ACM Press.
9 Satish Balay, Jed Brown, Kris Buschelman, William D. Gropp, Dinesh Kaushik, Matthew G.

Knepley, Lois Curfman McInnes, Barry F. Smith, and Hong Zhang. PETSc Web page, 2012.
http://www.mcs.anl.gov/petsc.

10 Satish Balay, Jed Brown, , Kris Buschelman, Victor Eijkhout, William D. Gropp, Dinesh Kaushik,
Matthew G. Knepley, Lois Curfman McInnes, Barry F. Smith, and Hong Zhang. PETSc users manual.
Technical Report ANL-95/11 - Revision 3.3, Argonne National Laboratory, 2012.

11 Satish Balay, William D. Gropp, Lois Curfman McInnes, and Barry F. Smith. Efficient management
of parallelism in object oriented numerical software libraries. In E. Arge, A. M. Bruaset, and H. P.
Langtangen, editors, Modern Software Tools in Scientific Computing, pages 163–202. Birkhäuser Press,
1997.

12 IBM Redbooks — IBM System Blue Gene Solution: Blue Gene/Q Application Development - Update,
April 2013.

12

Argonne National Laboratory is a U.S. Department of Energy

laboratory managed by UChicago Argonne, LLC

Argonne Leadership Computing Facility
Argonne National Laboratory

9700 South Cass Avenue, Bldg. 240

Argonne, IL 60439

www.anl.gov

