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Abstract

In order to solve the electronic structure of large molecular systems
on petascale computers using MADNESS, a numerical tool kit, are
required fast and accurate implementations for linear algebra. MAD-
NESS uses multiresolution analysis and low separation rank which
translates high dimensional functions in tensor products using Legen-
dre polynomial. The multiple tensor products make to the singular
value decomposition and matrix multiplication the most intense oper-
ations in MADNESS. This work discusses the interfacing of Eigen3 as
a C++ substitute of LAPACK and introduces Elemental for the diag-
onalization of large matrices. Furthermore, the present paper shows
the performance these libraries on Blue Gene/ Q.

1 Introduction

Quantum chemistry has influenced many fields in science by revealing the
structure of materials and molecules at atomic level, its most notable achieve-
ment is to predict accurately chemical and physical properties. The study of
materials at atomic level is a complicated task, even very sophisticated ex-
periments are challenged to reproduce observations at such level. In practice,
to obtain values from quantum chemistry methods with meaningful precision
requires a huge computational effort. Quantum mechanical methods as the
so-called Density Functional Theory (DFT), that approaches the electronic
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exchange and correlation, in average reproduces atomization energies within
an error of 0.2 eV. Although the availability of large modern computers,
DFT currently might compute molecular systems with only few thousands
of electrons. [1]

On the other hand, along the last decades the theoretical chemistry has
changed drastically in part due to the new developments and approximations
to apply the quantum chemistry, and in part to the increment of calculation
power. Thus, the unprecedented availability of petascale computers for fun-
damental research has required new software development according with the
last architecture capacities, overall it has bee required software that exploits
the technology of multi-cores and multi-processors using large blocks of dis-
tributed memory, and new codes that can be reusable. Thus, the synergy of
modern quantum chemistry and supercomputing demands the production of
new generations of codes able to utilize efficiently large computer systems,
and desirably, be able to evolve at the same pace as the novel technologies
emerge.

The software Multiresolution Adaptive Numerical Environment for Scien-
tific Simulation (MADNESS) [2] is a general numerical framework for massive
parallel computations. MADNESS was designed to reduce the programming
effort offering a set of high level tools to solve many dimension integral-
differential equations and maximize the science productivity by letting to
the programmer to be focused in her or his application instead writing com-
plex low level instructions. MADNESS has been successfully used for several
applications in nuclear physics, chemistry, atomic physics, among other ar-
eas. MADNESS uses a multiresolution analysis (MRA) that relies on the low
separation rank (LSR) representation for functions and operators which lead
a generalization of one spatial dimension to higher dimensions and yields
algorithms that are too costly for practical applications. The current im-
plementation of MADNESS might operate with a large variety of kernels
and boundary conditions. For quantum chemistry MADNESS has an imple-
mentation to solve the electronic structure problem with the methods DFT,
[3, 4, 5] Hartree-Fock [6, 7] and MP2.[8] This software discretizes the orbital
functions within an orthogonal basis sets constructed with Legendre polyno-
mia which in conjunction with the LSR of the local potentials leads to solve
linearly the electronic structure at a given arbitrary precision. [9]

This report will summarize part of the effort made to port MADNESS
and make it efficient to the IBM Blue Gene/Q technology. The text will
discuss briefly the most computational costly parts of the MADNESS calcu-
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lations related with linear algebra operations and the interface to external
algebra libraries in order to speedup the code. This text will avoid any deep
discussion of the formulation of the approaches used and/or the hybrid par-
allel model found MADNESS, nevertheless we will address to the readers for
further details in the correspondent references.

2 Methods

2.1 Numerical Methods Used

The MRA allows to represent a d-dimensional space in d-dimensional boxes,
each box with a basis set formed as a of tensor product of Legendre polyno-
mials. The LSR representation of a 3D function is written as follows

φ(x, y, z) ≈
r∑

k1,k2,k3

sk1,k2,k3ϕk1(x)ϕk2(y)ϕk3(z)

where ϕi(i) is a set of orthogonal and polynomial functions and the coef-
ficients sk1,k2,k3 are scalar and are adjusted in an adaptive separation rank r

to archive a threshold for the accuracy of ǫ that is given by the difference

||φ(x, y, z)−
r∑

k1,k2,k3

sk1,k2,k3ϕk1(x)ϕk2(y)ϕk3(z)||2 ≤ ǫ,

some elements of the rank r may need a refinement to reach faster the re-
quired accuracy. This technique is similar in speed as Fast Fourier Trans-
formation used in spectral algorithms on uniform grids. In the practice, the
LSR representation in wavelets give us to formulate our functions as a tensor
product

F = (((STD)Tk1D)Tk2D)k3 ,

the indexes k1, k2, k3 run over the number of subspaces in the rank used to
represent the original function. The matrices D and S are matrices with the
filter coefficients and scalar coefficients of the wavelets. We can anticipate
that small matrix-matrix operations are the most intense operations in our
calculations.

In quantum chemistry, the key equation to obtain the wavefunction of a
time-independent system, composed by electrons and ions, is the Schrödinger

3



equation ĤΨ = EΨ, where the electronic Hamiltonian Ĥ is the sum of
the kinetic and potential operators Ĥ = T̂ + V̂ . The numerical low-rank
representation of the wavefunctions allows to solve the Schrödinger equation
in an integral equation form as: [10, 11]

Ψ = −2 · Ĝµ(VΨ),

where µ2 = (−2 ∗E), and E is the total energy of system. The wavefunction
Ψ can be seen as the auxiliary Kohn-Sham wavefunction and can be applied
for DFT. The integral operator Ĝµ can be written as

(Ĝµ ∗ f)(x) =

∫
e−µ|x−x′|

4π|x− x′|
f(x′)dx′.

Finally the problem is reduced to find a Ψ that minimizes the energy E,
and this is solved iteratively since in this approach the energy is variational.

The application of the integral operator implies the convolution of the
real-space functions in the LSR representation. The deconvolution operation
is also computationally very demanding and requires the decomposition of
the coefficients sk1,k2,k3 of the tensor products in the low rank separation.
decomposes sk1,k2,k3 such as The decomposition of the coefficients sk1,k2,k3 is
the second most expensive operation and is performed using standard Single
Value Decomposition algorithms (SVD). Thus the most intensive operations
are applied to small matrices, this leads to implement very specific algorithms
for those cases.

Additionally, the wavefunctions in the methods DFT and Hartree-Fock
are chosen to be real wavefunctions. DFT and HF establishes a formalism
of separable particle functions that permits to write the wavefunction of
the system as a single Slater determinant Ψ = 1√

N !
|φ1(r1)...φN(rN)| . In

MADNESS, like in any other quantum chemistry code, to obtain the energies
of each electronic state needs to solve a problem of eigenvalues, this problem
is written as

(H̃ − ǫĨ)S̃ = 0.

The elements of matrix H̃ are the integrals of the independent particle Hamil-
tonian Hi,j =

∫
d~rφi(~r)

∗ĥφj(~r) and the elements of S̃ are the values of the
orbital overlap Si,j =

∫
d~rφi(~r)

∗φj(~r). The dimension of this problem is the
size of the basis set used, that is proportional to the number of electrons
in systems. For large calculations this is a potential computational bottle
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neck to solve the whole wavefunction. The orbital functions φi(~r) initially
are built as a linear expansion of Gaussian functions, and for multiresolution
representation we chose a finite basis represented by wavelets.

In summary, MADNESS requires for high performance calculations 1)
a fast small matrix-matrix multiplication algorithm, 2) a reliable and fast
Single Value Decomposition and 3) a parallel eigen-solver for real Hermitian
matrices. MADNESS uses by default the external linear algebra subroutines
included in BLAS and LAPACK. In order to improve performance of the
code, we substituted BLAS/LAPACK with libraries that are more efficient
for the matrix dimensions used in MADNESS, which are generally smaller
than those for which BLAS/LAPACK are optimized. In the follow sections
we will discuss the results when MADNESS uses linear algebra libraries writ-
ten in C++.

3 Transition from BG/P to BG/Q

The Blue Gene /Q (BG/Q)architecture is a totally new technology for scien-
tific applications and its closest technology reference available is the previous
generation Blue Gene /P (BG/P). When we compare the performance be-
tween the two generations BG/Q and BG/P in most of cases we experience a
speedup of 3x-4x. In the Figure 1 is plotted the comparison between BG/Q
and BG/P with same number of nodes and calculation a cluster of 5 water
molecules. In a glance, for small calculations BG/Q is 4 times faster than a
BG/P with few nodes.

For large molecular systems, where the number of operations are more
intensive, BG/Q has a much better performance than BG/P; and this per-
formance grows directly proportional with the size of the problem, see Figure
2.

4 Lineal Algebra Libraries

4.1 Eigen3

The singular value decomposition for small square matrices are one of the
most intensive serial operations in MADNESS. We added the option to sub-
stitute LAPACK by the templated C++ library Eigen3 [12]. This library
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Figure 1: Comparison BG/P vs BG/Q with same number of nodes and same
size of molecular system.

Figure 2: Performance comparison between BG/P and BG/Q when we
growth the size of the molecular system computing with 64 nodes.
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Program 4.1 Example of single value decomposition application using
Eigen3.
typedef Matrix<double,Dynamic,Dynamic> MatrixX;

MatrixX U, V, M;

Matrix<double, Dynamic, 1> Sigms;

// init M

// get U and V from M=U.Sigms.V using JacobiSVD decomposition

JacobiSVD <MatrixX> svd(M, ComputeThinU | ComputeThinV);

U = svd.matrixV();

V = svd.matrixU();

Sigms = svd.singularValues();

substitutes most of the operations found in LAPACK, providing several al-
gorithms to obtain the eigenvectors and eigenvalues of matrices. Each algo-
rithm could be as fast as the precision required and the size of the matrices
involved. Usually more precision means slower calculations. Eigen3 imple-
ments a special class to manipulate matrices and some operations for small
matrices are hard coded. Initially, the decomposition in the LRS require
small matrices operations Eigen was consider an excellent candidate to re-
place LAPACK in MADNESS.

An example of a small piece of code using Eigen3 to call a SVD calcula-
tion is shown in the Program 4.1. Notice that Eigen3 has its own class to
represent matrices, Matrix. The initialization of matrices from Eigen3 with
the matrices in MADNESS is made using pointers. MANDESS and Eigen3
matrix classes have in common objects to insert the directly the elements of
the matrices.

In the Figure 3 we show the timings in the decomposition of the real
matrix M as M = UΣV T (where U and V T are the right and left unitary
matrices respectively and Σ is a vector of eigenvalues) with a size (20,20) and
smaller using the libraries LAPACK and Eigen3. In this Figure we might
notice that Eigen3 is very competitive when computes with small matrices;
with sizes less than (16) is faster than LAPACK. Because the SVD procedure
is called millions of times, even small increases in performance have a large
impact on the overall runtime of the code.
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Figure 3: CPU time solving the SVD using Eigen3 and LAPACK in square
matrices dimension 20 and smaller.

In spite of the positive results in the performance of Eigen3 for small
matrices, its competitiveness is lost with larger matrices, as is shown in the
Figure 4 where for medium size and large matrices LAPACK is approxi-
mately twice the speed of Eigen3.

4.2 Elemental

In MADNESS in order to obtain orbital energies from the Kohn-Sham or
Hartree-Fock methods is necessary to solve a matrix problem of eigenvalues.
The dimension of the matrix in our case is the number of occupied orbitals.
We interfaced MADNESS matrices to Elemental to facilitate the operations
of large matrices and vectors. This is particularly relevant to diagonalize the
Hamiltonian matrix and also useful to project the initial Gaussian basis set
functions into the polynomial basis set via LRS. For small molecular sys-
tems with hundreds of electrons the matrix operations made with LAPACK
had negligible times, and single-node libraries where sufficient. Nevertheless,
when MADNESS calculates large molecules, with thousands of orbitals, the
use of a parallel eigen solver is mandatory, thus, we chose Elemental [13]
because it is a modern, object-oriented C++ library that fits with the rest
of MADNESS’ design and because its performance has been shown to be ex-
cellent on Blue Gene systems, i.e. it is faster than ScaLAPACK (this result
is not unique to Blue Gene, however).

Elemental maps the MPI processes used on 2D grid and distributes the
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Figure 4: CPU time solving the SVD using Eigen3 and LAPACK in square
matrices with dimension between 30 to 200.

matrices data in blocks along that grid. The mathematical operations of the
matrices are performed in groups of elements in the grid, the time saved doing
this operations are reflected in operation of reduction and collection. Ele-
mental is based in the previous designs found in FLAME and PLAPACK,
projects held in the University of Texas, Austin. The snippet in the Pro-
gram 4.2 exemplify how we call the eigen solver in Elemental using C++.
The value blocksize should be chosen taking in account the size of the
matrix to manipulate and the number of processors. For large matrices in
BG/Q (size >3600) we found convenient to set blocksize=128.

The Figure 5 shows the performance of Elemental obtaining the eigen-
vectors and eigenvalues of real matrices with dimension of 3200 to 9000. The
speedup values in this plot refer to the timings obtained with 8 nodes of
BG/Q. For very large problems, when one passes form 8 to 16 processors
the speedup is bigger than the expected, 1.2x . A careful analysis of the
plot proves that Elemental is hard to saturate even with 128 processors. The
difference between LAPACK and Elemental is extremely large in a multipro-
cessor scheme, since the former is serial. serial code and the later a parallel
one. To exemplify the difference between the too libraries to solve the eigen
problem of a matrix with a size 3600 to LAPACK takes 753 seconds, while
Elemenetal takes 68.2 seconds when using 16 nodes.
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Program 4.2 Example of a solution of an eigenvalues problem kind AxBx
using Elemental.

const int blocksize = 128; //set block size for the data distribution.

SetBlocksize(blocksize);

Grid GG(MPI_COMM_WORLD); //set grid processors within the MPI rank

// ’int n’ is the size of the matrix

DistMatrix<T> B( n, n, GG ), A( n, n, GG );

DistMatrix<double> X( n, n, GG ); //eigenvectors

DistMatrix<double,VR,STAR> w( n, n, GG); //eigenvalues

// init matrices A and B

HermitianGenDefiniteEigType eigType = AXBX; //problem to solve Ax=wBx

UpperOrLower uplo = CharToUpperOrLower(’U’);

HermitianGenDefiniteEig( eigType, uplo, A, B, w, X ); //get w and X

Figure 5: Parallel speedup of Elemental computing the eigenvalues and eigen-
vectors of matrices with different sizes in BG/Q.
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5 Conclusions

MADNESS as a mathematical framework for scientific computation on petas-
cale plataforms was optimized to speedup calculations replacing the most
intense subroutines from standard linear algebra packages BLAS/LAPACK
to Eigen3 and Elemental, which are more efficient and capable to exploit the
particular characteristics of the BG/Q architecture. Eigen3 in BG/Q has
better performance than LAPACK for small matrices, up to a size of 16.
Nevertheless Eigen3 has a bad performance with bigger matrices. Interfac-
ing of Elemental to MADNESS provides the capability to operate faster with
large and distributed matrices, in particular MADNESS was benefited of the
parallel eigensolver implemented in Elemental. In the near future we plan to
use more features of Elemental to improve MADNESS.
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