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1 Description of science

The aerodynamic simulations of this project involve modeling of active flow control based on
synthetic jet actuation that has been shown experimentally to produce large-scale flow changes
(e.g., re-attachment of separated flow or virtual aerodynamic shaping of lifting surfaces) from
micro-scale input [1, 2, 3]. This micro-scale input consists for instance in 0.1 W piezoelectric
disk which resonate in a cavity alternately and pushes/pulls out/in the fluid through a small
slit to create small-scale vortical structures that interact with, and thereby dramatically alter,
the cross flow. This process has yet to be understood fundamentally. Synthetic jet actuators
offer the prospect of not only augmenting lift but also other forces and moments in a dynamic
and controlled fashion for a range of operating conditions. They have been demonstrated to
restore and maintain flow attachment and reduce vibrations in wind turbine blades during
dynamic pitch, thereby reducing unsteady loads on gearboxes that are currently the prime
failure point. In virtual-shape flight control surfaces for aerial vehicles (including commercial
airplanes), conventional control surfaces (e.g., flaps, rudder, etc.) can be augmented or even
replaced with active flow control, thus improving their lift-to-drag ratio and/or control power.
The goal of the numerical simulations proposed in this project is to provide a complementary
and detailed view of the flow interactions at a much higher Reynolds number, approaching
engineering application scales for the first time.

2 Overview of numerical methods

2.1 Implicit finite element flow solver PHASTA

Flow computations are performed using a CFD flow solver called PHASTA (“Parallel Hierarchic
Adaptive Stabilized Transient Analysis”). This code is based on fully-implicit, stabilized, semi-
discrete finite element method for the transient, incompressible Navier-Stokes partial differential
equation (PDE) governing fluid flows. In particular, we employ the streamline upwind/Petrov-
Galerkin (SUPQG) stabilization method to discretize the governing equations [4, 6]. The sta-
bilized finite element formulation currently utilized has been shown to be robust, accurate
and stable on a variety of flow problems. In our CFD flow solver, the Navier-Stokes equa-
tions (conservation of mass, momentum and energy) plus any auxiliary equations (as needed
for turbulence models or level sets in two-phase flow) are discretized in space and time. The
discretization in space based on a stabilized finite element method leads to a weak form of
the governing equations, where the solution (and weight function) are first interpolated using
hierarchic, piecewise polynomials, and followed by the computation of integrals appearing in
the weak form using Gauss quadrature. Implicit integration in time is then performed using a
generalized-a method which is second-order accurate and provides precise control of the tem-
poral damping to reproduce Gears Method, Midpoint Rule, or any blend in between [5]. On a
given time step, the resulting non-linear algebraic equations are linearized to yield a system of
linear equations Ax = b which are solved using Krylov iterative procedures such as GMRES
(“Generalized Minimal RESidual” method).

2.1.1 Parallelization

Finite element methods are very well suited for use on parallel computers as substantial com-
putational effort is divided into two main tasks: 1) the calculation of element level integrals
leading to the linear system assembly and 2) the solution of the resulting system of algebraic
equations Ax =b. Both of these work types can be equally divided among the processors
by partitioning the aggregate mesh into equal load parts [12, 13]. So far, PHASTA is a pure
MPI based code and each process executes of copy of the analysis code to handle the compu-
tation work and interactions corresponding to its mesh part. Element-based mesh partitioning
is currently used for the domain decomposition approach and leads to a natural parallelization
for element-integration/equation-formation stage making it highly scalable. In element-based
partitioning, each element is uniquely assigned to a single part but in turn leads to shared
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dofs or unknowns in the system of equations, which results from the duplicated vertices on
the inter-part boundaries. This element-based partitioning along with the control relationships
between multiple images of shared vertices is illustrated in Figure 1.

Figure 1: Element-based partitioning and the control relationships between multiple images of
duplicated and shared vertices. Solid dot on the middle and right figures denotes an owner
image whereas hollow ones indicate non-owners.

Collectively, all the processes have the same information as in the unpartitioned or serial
case but no one process holds or has knowledge of the entire tangent matrix, A, nor the
residual vector b. Thus, to be able to progress the computations in parallel and march in time,
interactions between shared dofs are completed via communications.

After numerical integration on local part (i.e. task 1 mentioned in the previous paragraph
for the system assembly), values in rows of b for shared dofs are individually incomplete on
each part (referred to as on-part value) because their contributions are distributed among
their images (in finite element methods this is due to the compact support of basis or shape
functions used). To obtain a complete value for a vector entry associated with a shared dof,
peer-to-peer communications related to shared dofs are required and are implemented in two
stages, as illustrated in Figure 2. First, data is accumulated at owner image vertices to obtain
complete values. Then, complete values are copied from owners to update their non-owner
images. Although one could elect to communicate the on-part entries of the tangent matrix
A to make them complete, our approach does not, limiting communications to vector entries
only (such as in b). This matrix update will be achieved implicitly during the resolution of the
linear system, as explained in the next paragraph.

(a) Non-owners send while owners re- (b) Owners send whereas non-owners
ceive and accumulate. receive and update.

Figure 2: Communication steps involved to obtain complete values for shared dofs.

The second task of our implicit solve involves finding the solution update vector x. Krylov
iterative solution techniques such as GMRES are currently used for that purpose. These tech-
niques employ repeated products of A with a series of vectors (say, p) to construct an orthonor-
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mal basis of vectors used to approximate x. In this series, the outcome of any matrix-vector
product is another vector q (= Ap) which is used to derive the subsequent vector in the series.
The first vector in this series is derived from the residual vector b which contains complete
values at this point of the solve. Even though A contains only on-part values for shared dofs
and is incomplete, it is still possible to perform the basic kernel of (sparse) matrix-vector prod-
uct, i.e., q = Ap, provided vector p has been first updated in the same way as illustrated in
Figure 2 for vector b and contains complete values. Due to the distributive property of Ap
product, the resulting vector q will in turn contain on-part (incomplete) values. Therefore,
after a local Ap product, our two-pass communication strategy illustrated in Figure 2 must be
applied again to obtain complete values in q (provided p contained already complete values).
Before proceeding to the next product in the series, it is important to note that computation
of norms is required to perform orthonormalization. In this step, the norm of vector q, and
its dot-product with the previous vectors in the series, are computed. To compute a norm or
dot-product, first a local dot-product is computed (requiring no communication) but then, to
obtain a complete dot-product, a sum across all cores is needed. A collective communication
(of allreduce type) is used to carry out the global summation. To summarize task 2, successive
Ap products are carried out along with peer-to-peer communications to obtain complete values
and with global communications to perform the orthonormalization. This series of steps leads
to an orthonormal basis of vectors which is used to find an approximate update vector x and
marks the end of a non-linear iteration step.

2.2 Adaptive mesh control and mesh partitioning

In addition to the CFD flow solver PHASTA, adaptive meshing [8, 9, 11, 10] and mesh partition-
ing [7] techniques are other essential ingredients required to generate and partition significantly
large (in the order of 5 billion or more elements) 3D unstructured finite element meshes for the
target applications. Indeed, the application of reliable numerical simulations requires them to
be executed in an automated manner with explicit control of the approximations made. Since
there are no reliable a priori methods to control the approximation errors, adaptive methods
must be applied where the mesh resolution is determined in a local fashion based on the spatial
distribution of the solution and errors associated with its numerical approximation. Further-
more, the reliability and accuracy of simulations is also a strong function of the mesh quality
and configuration. In many physical problems of interest, especially in the field of fluid me-
chanics, solution features are most effectively resolved using mesh elements which are oriented
and configured in a certain manner. For example, in the case of viscous flows, use of boundary
layer meshes is central to the ability to effectively perform the flow simulations due to their
favorable attributes, i.e., high-aspect ratio, orthogonal, layered and graded elements near the
viscous walls. As shown in Section 5, while the quality of the mesh is essential for the relia-
bility and the quality of the solution, the quality of the mesh partition plays a key role in the
scalability of the flow solver.

3 Problem size

The usual productive runs on Intrepid concerned cases that included up to O(0.5 billion) finite
elements. On Mira, the new available resource allow us to consider typical problems that include
O(5 billion) finite elements, that is a factor 10 increase w.r.t. Intrepid. This factor will allow
us to increase the Reynolds number of our simulations and approach engineering application
scales for the first time.

4 Codes and packages involved in this project

The execution of the flow solver PHASTA and the adaptive meshing and mesh partitioning
procedures rely on the following third-party libraries and softwares: MPI, Zoltan, ParMETIS,
IPComMan, PIMA, FMDB, phParAdapt, ParMa, Simmetix, ACUSIM and Parasolid/Acis.
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5 Performance on Mira

The performance of PHASTA on MIRA is illustrated in Figure 3 and Table 1 with a strong
scaling study. These simulations associated with a flow control application are performed on a
3.3 billion finite element mesh. The number of MIRA nodes in this scaling study ranges from
2,048 to 32,768 (corresponding to respectively 16,384 and 524,288 cores) and the number of
MPIT processes per core varies from 1 to 4. The simulation with 2,048 nodes (32,768 cores) and
1 MPI process per core is considered as the reference hereafter.
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Figure 3: Strong scaling performance for PHASTA on MIRA for a 3.3 billion finite element
mesh.

First, a consistent scaling factor of 88.22% is observed on 32,768 nodes (524,288 cores) with
one MPI process per core w.r.t. to our reference. Increasing the number of MPI processes per
core to 2 or 4 leads to an additional significant improvement of the performance. Indeed, 16,384
nodes (262,144 cores) with one MPI process per core leads to a scaling factor of 92,92%, whereas
2 MPI processes per core leads to a scaling factor of 141,78%. On 2,048 nodes (32,768 cores),
4 MPI processes per core leads to a scaling factor of 193.73%, 2 MPI processes to 155.56% and
1 MPT process per core to 100% (reference case). Finally, MIRA appears to be about 11 times
faster than Intrepid on a node basis when 1 MPI process per core is considered on both MIRA
and Intrepid. When 2 MPI processes per core are considered on MIRA, the acceleration factor
per node rises up to about 18 (with still the standard 1 MPI process per core on Intrepid in
this comparison).

As mentioned in the previous section, the scaling of our flow solver strongly depends on the
quality of the mesh partitioning. Indeed, one important point to consider during the partitioning
of the mesh is that the computational load (in any part) during the system formation stage
(i.e., during formation of the tangent matrix A and residual vector b) depends on the number
of elements present in the part, whereas the system solution stage depends on the degrees-of-
freedom (dofs) or unknowns in the system of equations on that part, which is proportional to
the number of vertices. Typically, element balance (with sufficient load per part) results in
a reasonable dof balance as well. As long as the dof balance is preserved, the element-based
partitioning also maintains the scalability in the iterative linear solve step, as illustrated in
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K Nodes | K Cores | MPI process K mesh parts Wall Clock Scaling factor | Mira/Intrepid
per core (s) (%) node factor
= part/core | = MPI process Ref: 2K Ref: 40K
nodes BG/Q | nodes BG/P
with 1 with 1
mpi/core mpi/core
2 (ref) 32 1 32 206.09 100.00 12.04
4 64 1 64 103.21 99.84 12.02
8 128 1 128 53.04 97.14 11.69
16 256 1 256 27.43 93.92 11.30
32 512 1 512 14.6 88.22 10.62
1 16 2 32 306.31 134.56 16.20
2 32 2 64 132.48 155.56 18.72
4 64 2 128 65.13 158.21 19.04
8 128 2 256 33.96 151.72 18.26
16 256 2 512 18.17 141.78 17.06
1 16 4 64 265.77 155.09 18.67
2 32 4 128 106.38 193.73 23.32

Table 1: Strong scaling results for PHASTA on MIRA with a 3.3 billion finite element mesh.

Figure 3 with the simulations performed with 1 MPI process per core.

For a mesh with fixed element topology (e.g. tetrahedra), balanced parts within a partition
imply that each part contains as close to the average number of mesh entities (both elements
and vertices) as possible. However, in situations where the number of mesh elements per part
is relatively small (in the order of few thousand), significant imbalance in dofs can result while
the element imbalance remains under control. Indeed, the balance of dofs is not explicitly
requested by pure element-base partitioners. This dofs imbalance increase is illustrated in
Table 2 and highlighted in particular with the mesh partitioned in 524,288 and 1,572,864 parts.
Furthermore, the percentage of shared dofs on part boundaries increases in situations where a
fixed-size problem is spread over more and more parts as is the case during this strong scaling
study and thus, eventually becomes detrimental to scaling. Finally, it is also common for pure
element-based partitioners to generate empty parts in such extreme conditions that flow solvers
typically cannot handle.

To illustrate further this dof imbalance as the the mesh is partitioned in more and more
parts with a pure element-base partitioner, the mesh entity distribution per part and associ-
ated histogram are presented in Figures 4 and 5 for respectively 524,288 and 1,572,864 parts.
Figures 4(a) and 4(c) show that most of the parts are well balanced in terms of element. The
element histogram also confirms that the node distribution is relatively smooth, as most parts
present a number of elements above the target average by only 5.30% at most. However, the
conclusion is different for the vertex distribution and histogram presented in Figures 4(b) and
4(d). Indeed, the node distribution is characterized by a number of heavily loaded parts (based
on mesh vertices) referred to as spikes, with a number of vertices significantly above above the
target average. These spikes are significant contributors to the degradation of the scaling of
the iterative linear solver. Moreover, the right tail of the node histogram shows that only a
few fraction of the parts are too heavily loaded w.r.t. the target average. This tendency is
emphasized in Figure 5, where the element-base partitioning of the mesh in 1,572,864 parts also
generates a few empty parts that solvers typically cannot handle. Solutions to remedy to these
problems are presented in Section 6 and are currently being implemented.
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Parts 32K 64K 128K
Elements ‘ Vertices Elements ‘ Vertices Elements ‘ Vertices
Total 3.3 billion | 628,518,185 cst 658,364,797 cst 690,969,857
Target avg 101,344 19,181 50,672 10,046 25,336 5,272
Max in part 107,087 20,910 53,362 11,053 26,681 5,940
% imbalance 5.67 9.01 5.31 10.02 5.31 12.67
Min in part 56,203 10,790 28,427 5,824 11,993 2,610
Parts 256K 512K 1536K
Elements ‘ Vertices Elements ‘ Vertices Elements ‘ Vertices
Total cst 733,192,244 cst 787,886,775 cst 905,248,408
Target avg 12,668 2,797 6,334 1,503 2,111 576
Max in a part 13,340 3,267 6,670 1,829 2,231 875
% imbalance 5.30 16.80 5.30 21.69 5.68 51.91
Min in a part 5,251 1,170 867 289 0 0

Table 2: Element and vertex imbalance for a 3.3 billion finite element mesh

ElIm Distribution -524288 parts - UR2 ZoltanLocal

E
[
5
]
3
€
5
2
5
3
N
5
Eo
5
z

2 25 3

(a) Element distribution.

Total: 3320840384 elm
Avg: 6334

Max: 6670

Min: 867

Imbalance: 5.30 %

Number of parts
- n W £ (6] o ~ @

=S

0.2 03 04

05 06 07

Elm Histogram -524288 parts - UR2 ZoltanLocal

08 09 1

Normalized number of elm per part

(c) Element histogram.

11

Node Distribution -524288 parts UR2 ZoltanLocal

?
(o]
3
=
2
5
]
3
€
5
2
H
N
s
go.
5
z

balahce:

(b) Vertex distribution.

ox10°

al
- M B O ®

Number of parts
o
@

Total: 787886775 nodes
Avg: 1503

Max: 1829

Min: 289

Imbalance: 21.69 %

o
>

o o
S

0 02 04 06

Normalized number of nodes per part

08

Node Histogram -524288 parts UR2 ZoltanLocal

1 12

(d) Vertex histogram.

Figure 4: Mesh entity distribution per part (top) and histogram (bottom) for a 3.3 billion
element mesh partitioned in 524,288 parts with Zoltan and ParMetis. The blue line in the

distribution plots represents the target average number of entities per part.
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Figure 5: Mesh entity distribution per part (top) and histogram (bottom) for a 3.3 billion
element mesh partitioned in 1535K parts with Zoltan and ParMetis. The blue line in the
distribution plots represents the target average number of entities per part.
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6 New algorithms for Mira

6.1 Unstructured mesh partitioning at large scale

Two algorithms aiming at improving the quality of the mesh partitioning are being implemented
in a library called Parma, in coordination with the Scientific Computation Research Center at
the Rensselaer Polytechnic Institute (RPI). The first algorithm whose first version was presented
in [13] consists in migrating locally a small number of elements from heavily loaded parts to
relatively lightly loaded neighboring parts in order to reduce the vertex imbalance without
perturbing much of the element balance. The result of this algorithm is illustrated in Table 3
and Figures 6 and 7 with an extreme example that includes 180 million elements partitioned
in 131,072 parts.

Parts 128K (no Parma) 128K (with Parma)
Elements \ Vertices Elements \ Vertices
Total 180 million | 54,043,396 cst 52,723,643
Target avg 1,378 412 1,378 402
Max in a part 1,455 564 1,604 462
% imbalance 5.59 36.89 16.40 14.93
Min in a part 0 0 1 4

Table 3: Element and vertex imbalance for a 180 million element mesh partitioned in 131,072
parts with Zoltan and ParMetis, and improved with Parma.

From this table and associated figures, one can observe that the vertex imbalance is sig-
nificantly improved from 36.89% to 14.93%. In this extreme example, the imbalance for both
vertices and elements reaches a similar level after this first operation. Migrating a few elements
locally from heavily loaded parts to lightly loaded neighboring parts not only reduces the vertex
imbalance but also usually decreases the total number of vertices on part boundaries which in
turn decreases the total inter part communication. As a first simple solution to fix empty parts,
one single element is also migrated from a neighboring part to an empty part.

However, this first algorithm fails at removing all the spikes in the vertex distribution, es-
pecially when heavy loaded parts are concentrated in the same region of the mesh. A second
algorithm referred to as heavy part splitting approach is currently investigated for that pur-
pose. This algorithm is applied after the smooth element migration described in the previous
paragraph and includes three steps. The first step consists in estimating the number of heavy
loaded parts in the mesh (both in terms of vertex and elements). The second step consists
in generating as many empty parts as needed by grouping lightly loaded parts together. The
empty parts potentially generated by the pure element-base partitioning are also recycled for
that purpose. Finally, the third step consists in splitting the heavy loaded parts in two or more
parts and migrating these new split parts to the empty parts. These heavy loaded parts are
split based on their geometry in such a way that the total number of new shared vertices is
minimized.

6.2 Live and interactive data co-visualization

Fully implicit finite element methods applied to Computational Fluid Dynamics have already
been demonstrated to scale very well up to hundred of thousands of processors, provided that
the load in terms of both element and vertex per processor is carefully balanced for respectively
the equations formation and iterative solve. This scalability of the flow solver is essential for
simulation of turbulent flows that requires the Navier-Stokes equations to be solved on highly
refined meshes over a considerable number of small time steps. However, it may take orders of
magnitude longer time to perform any reasonable assessment of the insight gained due to the



Petascale Adaptive CFD K. E. Jansen

Elm Distribution -131072 parts - UR LB ZoltanLocal Node Distribution -131072 parts UR LB ZoltanLocal

P
8
8
g
5
3
€
5
2
F
3
N
H
E
s
z

Normalized number of elm

5 ] 5 8
Partid x10° partid x10°

(a) Element distribution. (b) Vertex distribution.
4 Elm Histogram -131072 parts - UR LB ZoltanLocal Node Histogram -131072 parts UR LB ZoltanLocal
2% 10 7000
18
6000
16
14 5000
£12 2
5 5 4000
S s
é é 3000
208 2
Total: 180681568 elm Total: 54043743 nodes
06 Avg: 1378 2000 Avg: 412
Max: 1455 Max: 564
04 Min:0 in: 0
Imbalance: 5.59 % 1000 Imbalance: 36.89 %
02
o R o I
0 02 04 06 08 1 12 14 0 02 04 06 08 1 12 14
Normalized number of elm per part Normalized number of nodes per part
(c) Element histogram. (d) Vertex histogram.

Figure 6: Mesh entity distribution and histogram among the mesh parts for a 180M element
mesh partitioned in 131,072 parts with Zoltan and ParMetis but without Parma. The blue line
in the distribution plots represents the target average number of entities per part.

time it takes to write the data, load the data into post processing software, and to analyze and
display insightful results. In coordination with the University of Colorado at Boulder, Kitware,
INC, the Rensselaer Polytechnic Institute and ALCF, we now consider a more strict definition of
“solution” whereby a live data analysis is able to provide continuous and reconfigurable insight
into massively parallel simulations, paving the way for interactive simulation and simulation
steering. Specifically, we demonstrated our co-visualization concept of either the full data or in
situ data extracts on 163,840 cores of the Blue Gene/P Intrepid system tightly linked through
a high-speed network to 100 visualization nodes of the Eureka system that share 800 cores and
200 GPUs, as illustrated in Figure 8. In particular, we used this technique to visualize vortical
structures that arise from the interaction of a cross flow with an array of synthetic jets on a
realistic wing with application to flow control. We plan to port this capability to Mira and
Tukey soon.
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